lorentz space
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 20)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Vol 32 (3) ◽  
Author(s):  
Dorothee D. Haroske ◽  
Cornelia Schneider ◽  
Kristóf Szarvas

AbstractWe study unboundedness properties of functions belonging to Lebesgue and Lorentz spaces with variable and mixed norms using growth envelopes. Our results extend the ones for the corresponding classical spaces in a natural way. In the case of spaces with mixed norms, it turns out that the unboundedness in the worst direction, i.e., in the direction where $$p_{i}$$ p i is the smallest, is crucial. More precisely, the growth envelope is given by $${\mathfrak {E}}_{{\mathsf {G}}}(L_{\overrightarrow{p}}(\varOmega )) = (t^{-1/\min \{p_{1}, \ldots , p_{d} \}},\min \{p_{1}, \ldots , p_{d} \})$$ E G ( L p → ( Ω ) ) = ( t - 1 / min { p 1 , … , p d } , min { p 1 , … , p d } ) for mixed Lebesgue and $${\mathfrak {E}}_{{\mathsf {G}}}(L_{\overrightarrow{p},q}(\varOmega )) = (t^{-1/\min \{p_{1}, \ldots , p_{d} \}},q)$$ E G ( L p → , q ( Ω ) ) = ( t - 1 / min { p 1 , … , p d } , q ) for mixed Lorentz spaces, respectively. For the variable Lebesgue spaces, we obtain $${\mathfrak {E}}_{{\mathsf {G}}}(L_{p(\cdot )}(\varOmega )) = (t^{-1/p_{-}},p_{-})$$ E G ( L p ( · ) ( Ω ) ) = ( t - 1 / p - , p - ) , where $$p_{-}$$ p - is the essential infimum of $$p(\cdot )$$ p ( · ) , subject to some further assumptions. Similarly, for the variable Lorentz space, it holds$${\mathfrak {E}}_{{\mathsf {G}}}(L_{p(\cdot ),q}(\varOmega )) = (t^{-1/p_{-}},q)$$ E G ( L p ( · ) , q ( Ω ) ) = ( t - 1 / p - , q ) . The growth envelope is used for Hardy-type inequalities and limiting embeddings. In particular, as a by-product, we determine the smallest classical Lebesgue (Lorentz) space which contains a fixed mixed or variable Lebesgue (Lorentz) space, respectively.


2021 ◽  
Vol 20 ◽  
pp. 581-596
Author(s):  
Lionel Garnier ◽  
Lucie Druoton ◽  
Jean-Paul Bécar ◽  
Laurent Fuchs ◽  
Géraldine Morin

Dupin cyclides are algebraic surfaces introduced for the first time in 1822 by the French mathematician Pierre-Charles Dupin. A Dupin cyclide can be defined as the envelope of a one-parameter family of oriented spheres, in two different ways. R. Martin is the first author who thought to use these surfaces in CAD/CAM and geometric modeling. The Minkowski-Lorentz space is a generalization of the space-time used in Einstein’s theory, equipped of the non-degenerate indefinite quadratic form QM(u) = x^2 + y^2 + z^2 - c^2 t^2where (x, y, z) are the spacial components of the vector u and t is the time component of u and c is the constant of the speed of light. In this Minkowski-Lorentz space, a Dupin cyclide is the union of two conics on the unit pseudo-hypersphere, called the space of spheres, and a singular point of a Dupin cyclide is represented by an isotropic vector. Then, we model Dupin cyclides using rational quadratic Bézier curves with mass points. The subdivisions of a surface i.e. a Dupin cyclide, is equivalent to subdivide two curves of degree 2, independently, whereas in the 3D Euclidean space ε3, the same work implies the subdivision of a rational quadratic Bézier surface and resolutions of systems of three linear equations. The first part of this work is to consider ring Dupin cyclides because the conics are circles which look like ellipses.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 625
Author(s):  
Maria Alessandra Ragusa ◽  
Fan Wu

In this paper, we investigate the regularity of weak solutions to the 3D incompressible MHD equations. We provide a regularity criterion for weak solutions involving any two groups functions (∂1u1,∂1b1), (∂2u2,∂2b2) and (∂3u3,∂3b3) in anisotropic Lorentz space.


2021 ◽  
Vol 24 (2) ◽  
pp. 393-420
Author(s):  
Ferenc Weisz

Abstract We introduce a new type of dyadic maximal operators and prove that under the log-Hölder continuity condition of the variable exponent p(⋅), it is bounded on L p(⋅) if 1 < p − ≤ p + ≤ ∞. Moreover, the space generated by the L p(⋅)-norm (resp. the L p(⋅), q -norm) of the maximal operator is equivalent to the Hardy space H p(⋅) (resp. to the Hardy-Lorentz space H p(⋅), q ). As special cases, our maximal operator contains the usual dyadic maximal operator and four other maximal operators investigated in the literature.


2021 ◽  
Vol 15 ◽  
pp. 107
Author(s):  
B.I. Peleshenko

We prove theorems on boundedness of operators of weak type $(\varphi_0, \psi_0, \varphi_1, \psi_1)$ from Lorentz space $\Lambda_{\varphi,a}(\mathbb{R}^n)$ to $\Lambda_{\varphi,b}(\mathbb{R}^n)$ in “limit” cases, when one of functions $\varphi(t) / \varphi_0(t)$, $\varphi(t) / \varphi_1(t)$ slowly changes at zero and at infinity.


2021 ◽  
Vol 19 (1) ◽  
pp. 1299-1314
Author(s):  
Li Du

Abstract In this paper, f-biharmonic submanifolds with parallel normalized mean curvature vector field in Lorentz space forms are discussed. When f f is a constant, we prove that such submanifolds have parallel mean curvature vector field with the minimal polynomial of the shape operator of degree ≤ 2 \le 2 . When f f is a function, we completely classify such pseudo-umbilical submanifolds.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Kazuhiro Ishige ◽  
Yujiro Tateishi

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ H: = -\Delta+V $\end{document}</tex-math></inline-formula> be a nonnegative Schrödinger operator on <inline-formula><tex-math id="M2">\begin{document}$ L^2({\bf R}^N) $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ N\ge 2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ V $\end{document}</tex-math></inline-formula> is a radially symmetric inverse square potential. Let <inline-formula><tex-math id="M5">\begin{document}$ \|\nabla^\alpha e^{-tH}\|_{(L^{p, \sigma}\to L^{q, \theta})} $\end{document}</tex-math></inline-formula> be the operator norm of <inline-formula><tex-math id="M6">\begin{document}$ \nabla^\alpha e^{-tH} $\end{document}</tex-math></inline-formula> from the Lorentz space <inline-formula><tex-math id="M7">\begin{document}$ L^{p, \sigma}({\bf R}^N) $\end{document}</tex-math></inline-formula> to <inline-formula><tex-math id="M8">\begin{document}$ L^{q, \theta}({\bf R}^N) $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M9">\begin{document}$ \alpha\in\{0, 1, 2, \dots\} $\end{document}</tex-math></inline-formula>. We establish both of upper and lower decay estimates of <inline-formula><tex-math id="M10">\begin{document}$ \|\nabla^\alpha e^{-tH}\|_{(L^{p, \sigma}\to L^{q, \theta})} $\end{document}</tex-math></inline-formula> and study sharp decay estimates of <inline-formula><tex-math id="M11">\begin{document}$ \|\nabla^\alpha e^{-tH}\|_{(L^{p, \sigma}\to L^{q, \theta})} $\end{document}</tex-math></inline-formula>. Furthermore, we characterize the Laplace operator <inline-formula><tex-math id="M12">\begin{document}$ -\Delta $\end{document}</tex-math></inline-formula> from the view point of the decay of <inline-formula><tex-math id="M13">\begin{document}$ \|\nabla^\alpha e^{-tH}\|_{(L^{p, \sigma}\to L^{q, \theta})} $\end{document}</tex-math></inline-formula>.</p>


2020 ◽  
Vol 10 (1) ◽  
pp. 877-894
Author(s):  
Ángel D. Martínez ◽  
Daniel Spector

Abstract It is known that functions in a Sobolev space with critical exponent embed into the space of functions of bounded mean oscillation, and therefore satisfy the John-Nirenberg inequality and a corresponding exponential integrability estimate. While these inequalities are optimal for general functions of bounded mean oscillation, the main result of this paper is an improvement for functions in a class of critical Sobolev spaces. Precisely, we prove the inequality $$\mathcal{H}^{\beta}_{\infty}(\{x\in \Omega:|I_\alpha f(x)|>t\})\leq Ce^{-ct^{q'}}$$ for all $\|f\|_{L^{N/\alpha,q}(\Omega)}\leq 1$ and any $\beta \in (0,N], \; {\text{where}} \; \Omega \subset \mathbb{R}^N, \mathcal{H}^{\beta}_{\infty}$ is the Hausdorff content, LN/α,q(Ω) is a Lorentz space with q ∈ (1,∞], q' = q/(q − 1) is the Hölder conjugate to q, and Iαf denotes the Riesz potential of f of order α ∈ (0, N).


Sign in / Sign up

Export Citation Format

Share Document