complex behaviour
Recently Published Documents


TOTAL DOCUMENTS

461
(FIVE YEARS 126)

H-INDEX

37
(FIVE YEARS 5)

MAUSAM ◽  
2022 ◽  
Vol 46 (1) ◽  
pp. 57-62
Author(s):  
O.P. BISHNOI ◽  
MOHAN SINGH ◽  
SURINDER SINGH

Complex behaviour of stress indices with relative evapotranspiration was observed in early and late sown wheat, however, under normal sown conditions it was linearly decreasing. Predawn leaf water potential and transpiration rate proved to be a stable stress index parameter for characterizing the internal moisture status in the plant as compared to the canopy temperature and stomatal resistance under stress conditions in wheat. Since it is easy to quantify canopy/leaf temperature and within seasonal variations it is widely used for scheduling irrigation and quantigying moisture stress effects on growth and development in wheat.  


2021 ◽  
Author(s):  
Jennifer V. Gerbracht ◽  
Tommy Harding ◽  
Alastair G. B. Simpson ◽  
Andrew J. Roger ◽  
Sebastian Hess

Microbial eukaryotes display a stunning diversity of feeding strategies, ranging from generalist predators to highly specialised parasites. The unicellular protoplast feeders represent a fascinating mechanistic intermediate, as they penetrate other eukaryotic cells (algae, fungi) like some parasites, but then devour their cell contents by phagocytosis. Besides prey recognition and attachment, this complex behaviour involves the local, pre-phagocytotic dissolution of the prey cell wall, which results in well-defined perforations of species-specific size and structure. Yet, the molecular processes that enable protoplast feeders to overcome cell walls of diverse biochemical composition remain unknown. We used the flagellate Orciraptor agilis (Viridiraptoridae, Rhizaria) as a model protoplast feeder, and applied differential gene expression analysis to examine its penetration of green algal cell walls. Besides distinct expression changes that reflect major cellular processes (e.g. locomotion, cell division), we found lytic carbohydrate-active enzymes that are highly expressed and upregulated during the attack on the alga. A putative endocellulase (family GH5_5) with a secretion signal is most prominent, and a potential key factor for cell wall dissolution. Other candidate enzymes (e.g. lytic polysaccharide monooxygenases) belong to families that are largely uncharacterised, emphasising the potential of non-fungal micro-eukaryotes for enzyme exploration. Unexpectedly, we discovered various chitin-related factors that point to an unknown chitin metabolism in Orciraptor, potentially also involved in the feeding process. Our findings provide first molecular insights into an important microbial feeding behaviour, and new directions for cell biology research on non-model eukaryotes.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Théo Laporte

PurposeThus, in this work the goal is to design, simulate and optimise a holder of a brushless motor in lattice structure to get the best performance in terms of mechanical strength, vibration absorption and lightness.Design/methodology/approachNowadays, most manufacturers and designers' goal are to sell efficient products in mass to keep up or outrun competition. Medical, aeronautical, automobile and civil engineering sectors produce complex parts and products that encompasses multiple properties such as lightweight, energy absorbance, vibration reduction and stress resistant. Studies found that lattice structures are more and more useful in these fields since their characteristics satisfy complex behaviour.FindingsThe study's outcome suggests that the use of lattice structure reduces 60% of the actual motor holder mass while keeping the strength of the material, meeting initial specifications.Research limitations/implicationsThe Ram capacity of the PC.Practical implicationsLight materials for aerospace engineering elongate the range of the unmanned aerial vehicle (UAV) to an extra range of flight.Social implicationsSituation awareness of the country border using surveillance drone and minimising the consumption of fuel.Originality/valueThe research allowed reducing 60% the actual holder mass.


Solar Physics ◽  
2021 ◽  
Vol 296 (12) ◽  
Author(s):  
Conrad Schwanitz ◽  
Louise Harra ◽  
Nour E. Raouafi ◽  
Alphonse C. Sterling ◽  
Alejandro Moreno Vacas ◽  
...  

AbstractRecent observations from Parker Solar Probe have revealed that the solar wind has a highly variable structure. How this complex behaviour is formed in the solar corona is not yet known, since it requires omnipresent fluctuations, which constantly emit material to feed the wind. In this article we analyse 14 upflow regions in the solar corona to find potential sources for plasma flow. The upflow regions are derived from spectroscopic data from the EUV Imaging Spectrometer (EIS) on board Hinode determining their Doppler velocity and defining regions which have blueshifts stronger than $-6~\mbox{km}\,\mbox{s}^{-1}$ − 6 km s − 1 . To identify the sources of these blueshift data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI), on board the Solar Dynamics Observatory (SDO), and the X-ray Telescope (XRT), on board Hinode, are used. The analysis reveals that only 5 out of 14 upflows are associated with frequent transients, like obvious jets or bright points. In contrast to that, seven events are associated with small-scale features, which show a large variety of dynamics. Some resemble small bright points, while others show an eruptive nature, all of which are faint and only live for a few minutes; we cannot rule out that several of these sources may be fainter and, hence, less obvious jets. Since the complex structure of the solar wind is known, this suggests that new sources have to be considered or better methods used to analyse the known sources. This work shows that small and frequent features, which were previously neglected, can cause strong upflows in the solar corona. These results emphasise the importance of the first observations from the Extreme-Ultraviolet Imager (EUI) on board Solar Orbiter, which revealed complex small-scale coronal structures.


2021 ◽  
Author(s):  
Amir Omidvarnia ◽  
Raphael Liegeois ◽  
Enrico Amico ◽  
Giulia Preti ◽  
Andrew Zalesky ◽  
...  

Dynamic models of cortical activity, as measured by functional magnetic resonance imaging (fMRI), have recently brought out important insights into the organization of brain function. In terms of temporal complexity, these hemodynamic signals have been shown to exhibit critical behaviour at the edge between order and disorder. In this study, we aimed to revisit the properties and spatial distribution of temporal complexity in resting state and task fMRI of 100 unrelated subjects from the Human Connectome Project (HCP). First, we compared two common choices of complexity measures (i.e., Hurst exponent versus multiscale entropy) and reported high similarity between them. Second, we investigated the influence of experimental paradigms and found high task-specific complexity. We considered four mental tasks in the HCP database for the analysis: Emotion, Working memory, Social, and Language. Third, we tailored a recently-proposed statistical framework that incorporates the structural connectome, to assess the spatial distribution of complexity measures. These results highlight brain regions including parts of the default mode network and cingulate cortex with significantly stronger complex behaviour than the rest of the brain, irrespective of task. In sum, temporal complexity measures of fMRI are reliable markers of the cognitive status.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3912
Author(s):  
Olivier Languin-Cattöen ◽  
Emeline Laborie ◽  
Daria O. Yurkova ◽  
Simone Melchionna ◽  
Philippe Derreumaux ◽  
...  

Von Willebrand Factor (vWf) is a giant multimeric extracellular blood plasma involved in hemostasis. In this work we present multi-scale simulations of its three-domains fragment A1A2A3. These three domains are essential for the functional regulation of vWf. Namely the A2 domain hosts the site where the protease ADAMTS13 cleavages the multimeric vWf allowing for its length control that prevents thrombotic conditions. The exposure of the cleavage site follows the elongation/unfolding of the domain that is caused by an increased shear stress in blood. By deploying Lattice Boltzmann molecular dynamics simulations based on the OPEP coarse-grained model for proteins, we investigated at molecular level the unfolding of the A2 domain under the action of a perturbing shear flow. We described the structural steps of this unfolding that mainly concerns the β-strand structures of the domain, and we compared the process occurring under shear with that produced by the action of a directional pulling force, a typical condition of single molecule experiments. We observe, that under the action of shear flow, the competition among the elongational and rotational components of the fluid field leads to a complex behaviour of the domain, where elongated structures can be followed by partially collapsed melted globule structures with a very different degree of exposure of the cleavage site. Our simulations pose the base for the development of a multi-scale in-silico description of vWf dynamics and functionality in physiological conditions, including high resolution details for molecular relevant events, e.g., the binding to platelets and collagen during coagulation or thrombosis.


Landslides ◽  
2021 ◽  
Author(s):  
Saeid M. Tayyebi ◽  
Manuel Pastor ◽  
Miguel M. Stickle ◽  
Ángel Yagüe ◽  
Diego Manzanal ◽  
...  

AbstractRapid flow-like landslides, particularly debris flows and debris avalanches, cause significant economic damage and many victims worldwide every year. They are usually extremely fast with the capability of travelling long distances in short times, sweeping away everything in their path. The principal objective of this paper is to test the ability of the ‘GeoFlow-SPH’ two-phase model developed by the authors, to reproduce the complex behaviour of natural debris avalanches where pore-water pressure evolution plays a key role. To reach this goal, the model is applied to reproduce the complex dynamic behaviour observed in Johnsons Landing debris avalanche including the observed bifurcation caused by the flowing out of part of the moving mass from the mid-channel. Initial thickness deposit trim-line, distribution of deposit volume, and the average velocities were provided for this real case, making it an appropriate case to validate the developed model. The paper also contributes to evaluate the SPH-FD model’s potentialities to simulate the structural countermeasure, like bottom drainage screens, used to reduce the impact of debris flows. The analysis of the results shows the adequacy of the proposed model to solve this complicated geophysical problem.


Author(s):  
Arindom Baruah ◽  
Jayaprakash Murugesan ◽  
Hemant Borkar

Abstract Friction stir spot welding is a solid-state joining process that has attracted significant attention particularly in the field of joining of lightweight, low melting alloys. These materials include alloys of Aluminium and Magnesium amongst many others which are of great importance to the aerospace and the automobile industries. The friction stir spot welding is a complex thermo-mechanical multiphysics phenomenon and is currently a field of intense research. The motivation of the current study is to understand this complex behaviour of the joining process by simulating it in the ABAQUS CAE environment. In the friction stir spot joining technique, the plunge stage is identified as the critical stage of operation as it involves a highly transient and dynamic zone for material and temperature flows. The plunge stage was studied in detail using the finite element based model. The plasticity of the material was simulated by the Johnson-Cook material model while the frictional heat generation was captured by applying a penalty-based frictional contact between the rotating tool and the workpiece contact surfaces. Considering the reasonable assumptions made, the results obtained by the numerical simulation model were found to agree with the past experimental and numerically modelled studies.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7155
Author(s):  
Jacek Kudrys ◽  
Dominik Prochniewicz ◽  
Feng Zhang ◽  
Mateusz Jakubiak ◽  
Kamil Maciuk

Onboard satellite clocks are the basis of Global Navigation Satellite Systems (GNSS) operation, and their revolution periods are at the level of 2 per day (about 12 h) in the case of the Medium Earth Orbit (MEO) satellites. In this work, the authors analysed the entire BeiDou Navigation Satellite System (BDS) space segment (BDS-2 and BDS-3) in terms of the occurrence of periodic, repetitive signals in the clock products, and checked if they coincide with the orbital periods or their multiples. The Lomb-Scargle (L-S) power spectrum was used as a tool to determine the periods present in the BDS clock products, allowing for analyses based on incomplete input data; in this case, the incomplete data were the phase data with jumps and outliers removed. In addition, continuous wavelet transform (CWT) was used to produce a time−frequency representation showing the more complex behaviour of the satellite clock products. As shown in the case of geostationary and geosynchronous inclined orbit satellites, the main period was 23.935 h, while for the Medium Earth Orbit it was 12.887 h, with the BDS satellite orbital period being 12 h 53 m (12.883 h). Some effects connected with reference clock swapping are also visible in the power spectrum. The conducted analyses showed that the BDS-2 satellite clocks have much higher noise than the BDS-3 satellite clocks, meaning that the number of designated periods is greater, but their reliability is significantly lower. BDS-3 satellites have only been in operation for a very short time, thus this is the first analysis to include this type of data. Moreover, such a wide and complex analysis has not been carried out to date.


2021 ◽  
Vol 152 ◽  
pp. 111332
Author(s):  
Sayed Saifullah ◽  
Amir Ali ◽  
Emile Franc Doungmo Goufo

Sign in / Sign up

Export Citation Format

Share Document