Journal of Intelligent Manufacturing and Special Equipment
Latest Publications


TOTAL DOCUMENTS

12
(FIVE YEARS 12)

H-INDEX

0
(FIVE YEARS 0)

Published By Emerald

2633-6596, 2633-660x

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Théo Laporte

PurposeThus, in this work the goal is to design, simulate and optimise a holder of a brushless motor in lattice structure to get the best performance in terms of mechanical strength, vibration absorption and lightness.Design/methodology/approachNowadays, most manufacturers and designers' goal are to sell efficient products in mass to keep up or outrun competition. Medical, aeronautical, automobile and civil engineering sectors produce complex parts and products that encompasses multiple properties such as lightweight, energy absorbance, vibration reduction and stress resistant. Studies found that lattice structures are more and more useful in these fields since their characteristics satisfy complex behaviour.FindingsThe study's outcome suggests that the use of lattice structure reduces 60% of the actual motor holder mass while keeping the strength of the material, meeting initial specifications.Research limitations/implicationsThe Ram capacity of the PC.Practical implicationsLight materials for aerospace engineering elongate the range of the unmanned aerial vehicle (UAV) to an extra range of flight.Social implicationsSituation awareness of the country border using surveillance drone and minimising the consumption of fuel.Originality/valueThe research allowed reducing 60% the actual holder mass.


2021 ◽  
Vol 2 (2) ◽  
pp. 37-62
Author(s):  
Pingan Zhu ◽  
Chao Zhang ◽  
Jun Zou

PurposeThe purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the area of manufacturing.Design/methodology/approachNo methodology was used because the paper is a review article.Findingsno fundings.Originality/valueHerein, the historical development, main strengths and measurement setup of DIC are introduced. Subsequently, the basic principles of the DIC technique are outlined in detail. The analysis of measurement accuracy associated with experimental factors and correlation algorithms is discussed and some useful recommendations for reducing measurement errors are also offered. Then, the utilization of DIC in different manufacturing fields (e.g. cutting, welding, forming and additive manufacturing) is summarized. Finally, the current challenges and prospects of DIC in intelligent manufacturing are discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Cris Koutsougeras ◽  
Mohammad Saadeh ◽  
Ahmad Fayed

PurposeThis modeling facilitates the determination of control responses (or possibly reconfiguration) upon such events and the identification of which segments of the pipeline can continue to function uninterrupted. Based on this modeling, an algorithm is presented to implement the control responses and to establish this determination. In this work, the authors propose using Message Queuing Telemetry Transport (MQTT), which is an integrated method to perform the system-wide control based on message exchanging among local node controllers (agents) and the global controller (broker).Design/methodology/approachComplex manufacturing lines in industrial plants are designed to accomplish an overall task in an incremental mode. This typically consists of a sequence of smaller tasks organized as cascaded processing nodes with local controls, which must be coordinated and aided by a system-wide (global) controller. This work presents a logic modeling technique for such pipelines and a method for using its logic to determine the consequent effects of events where a node halts/fails on the overall operation.FindingsThe method uses a protocol for establishing communication of node events and the algorithm to determine the consequences of node events in order to produce global control directives, which are communicated back to node controllers over MQTT. The algorithm is simulated using a complex manufacturing line with arbitrary events to illustrate the sequence of events and the agents–broker message exchanging.Originality/valueThis approach (MQTT) is a relatively new concept in Cyber-Physical Systems. The proposed example of feed-forward is not new; however, for illustration purposes, it was suggested that a feed-forward be used. Future works will consider practical examples that are at the core of the manufacturing processes.


Author(s):  
Weifei Hu ◽  
Tongzhou Zhang ◽  
Xiaoyu Deng ◽  
Zhenyu Liu ◽  
Jianrong Tan

Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant attraction in both industry and academia, there is no systematic understanding of DT from its development history to its different concepts and applications in disparate disciplines. The majority of DT literature focuses on the conceptual development of DT frameworks for a specific implementation area. Hence, this paper provides a state-of-the-art review of DT history, different definitions and models, and six types of key enabling technologies. The review also provides a comprehensive survey of DT applications from two perspectives: (1) applications in four product-lifecycle phases, i.e. product design, manufacturing, operation and maintenance, and recycling and (2) applications in four categorized engineering fields, including aerospace engineering, tunneling and underground engineering, wind engineering and Internet of things (IoT) applications. DT frameworks, characteristic components, key technologies and specific applications are extracted for each DT category in this paper. A comprehensive survey of the DT references reveals the following findings: (1) The majority of existing DT models only involve one-way data transfer from physical entities to virtual models and (2) There is a lack of consideration of the environmental coupling, which results in the inaccurate representation of the virtual components in existing DT models. Thus, this paper highlights the role of environmental factor in DT enabling technologies and in categorized engineering applications. In addition, the review discusses the key challenges and provides future work for constructing DTs of complex engineering systems.


2020 ◽  
Vol 1 (1) ◽  
pp. 25-41
Author(s):  
Qiming Chen ◽  
Xinyi Fei ◽  
Lie Xie ◽  
Dongliu Li ◽  
Qibing Wang

Purpose1. To improve the causality analysis performance, a novel causality detector based on time-delayed convergent cross mapping (TD-CCM) is proposed in this work. 2. Identify the root cause of plant-wide oscillations in process control system.Design/methodology/approachA novel causality analysis framework is proposed based on denoising and periodicity-removing TD-CCM (time-delayed convergent cross mapping). We first point out that noise and periodicity have adverse effects on causality detection. Then, the empirical mode decomposition (EMD) and detrended fluctuation analysis (FDA) are combined to achieve denoising. The periodicities are effectively removed through singular spectrum analysis (SSA). Following, the TD-CCM can accurately capture the causalities and locate the root cause by analyzing the filtered signals.Findings1. A novel causality detector based on denoising and periodicity-removing time-delayed convergent cross mapping (TD-CCM) is proposed. 2. Simulation studies show that the proposed method is able to improve the causality analysis performance. 3. Industrial case study shows the proposed method can be used to analyze the root cause of plant-wide oscillations in process control system.Originality/value1. A novel causality detector based on denoising and periodicity-removing time-delayed convergent cross mapping (TD-CCM) is proposed. 2. The influences of noise and periodicity on causality analysis are investigated. 3. Simulations and industrial case shows that the proposed method can improve the causality analysis performance and can be used to identify the root cause of plant-wide oscillations in process control system.


Author(s):  
Lin Li ◽  
Jianrong Tan ◽  
Zhongde Shan ◽  
Hongye Su

2020 ◽  
Vol 1 (1) ◽  
pp. 121-134
Author(s):  
Haotian Xu ◽  
Jingcheng Wang ◽  
Hongyuan Wang ◽  
Ibrahim Brahmia ◽  
Shangwei Zhao

PurposeThe purpose of this paper is to investigate the design method of partial observer canonical form (POCF), which is one of the important research tools for industrial plants.Design/methodology/approachMotivated by the two-steps method proposed in Xu et al. (2020), this paper extends this method to the case of Multi-Input Multi-Output (MIMO) nonlinear system. It decomposes the original system into two subsystems by observable decomposition theorem first and then transforms the observable subsystem into OCF. Furthermore, the necessary and sufficient conditions for the existing of POCF are proved.FindingsThe proposed method has a wide range of applications including completely observable nonlinear system, noncompletely observable nonlinear system, autonomous nonlinear system and forced nonlinear system. Besides, comparing to the existing results (Saadi et al., 2016), the method requires less verified conditions.Originality/valueThe new method concerning design POCF has better plants compatibility and less validation conditions.


2020 ◽  
Vol 1 (1) ◽  
pp. 67-85
Author(s):  
Fangli Mou ◽  
Dan Wu

PurposeIn recent years, owing to the rapidly increasing labor costs, the demand for robots in daily services and industrial operations has been increased significantly. For further applications and human–robot interaction in an unstructured open environment, fast and accurate tracking and strong disturbance rejection ability are required. However, utilizing a conventional controller can make it difficult for the robot to meet these demands, and when a robot is required to perform at a high-speed and large range of motion, conventional controllers may not perform effectively or even lead to the instability.Design/methodology/approachThe main idea is to develop the control law by combining the SMC feedback with the ADRC control architecture to improve the robustness and control quality of a conventional SMC controller. The problem is formulated and solved in the framework of ADRC. For better estimation and control performance, a generalized proportional integral observer (GPIO) technique is employed to estimate and compensate for unmodeled dynamics and other unknown time-varying disturbances. And benefiting from the usage of GPIO, a new SMC law can be designed by synthesizing the estimation and its history.FindingsThe employed methodology introduced a significant improvement in handling the uncertainties of the system parameters without compromising the nominal system control quality and intuitiveness of the conventional ADRC design. First, the proposed method combines the advantages of the ADRC and SMC method, which achieved the best tracking performance among these controllers. Second, the proposed controller is sufficiently robust to various disturbances and results in smaller tracking errors. Third, the proposed control method is insensitive to control parameters which indicates a good application potential.Originality/valueHigh-performance robot tracking control is the basis for further robot applications in open environments and human–robot interfaces, which require high tracking accuracy and strong disturbance rejection. However, both the varied dynamics of the system and rapidly changing nonlinear coupling characteristic significantly increase the control difficulty. The proposed method gives a new replacement of PID controller in robot systems, which does not require an accurate dynamic system model, is insensitive to control parameters and can perform promisingly for response rapidity and steady-state accuracy, as well as in the presence of strong unknown disturbances.


Author(s):  
Yaxing Ren ◽  
Saqib Jamshed Rind ◽  
Lin Jiang

PurposeA standalone microgrid (MG) is able to use local renewable resources and reduce the loss in long distance transmission. But the single-phase device in a standalone MG can cause the voltage unbalance condition and additional power loss that reduces the cycle life of battery. This paper proposes an energy management strategy for the battery/supercapacitor (SC) hybrid energy storage system (HESS) to improve the transient performance of bus voltage under unbalanced load condition in a standalone AC microgrid (MG).Design/methodology/approachThe SC has high power density and much more cycling times than battery and thus to be controlled to absorb the transient and unbalanced active power as well as the reactive power under unbalanced condition. Under the proposed energy management design, the battery only needs to generate balanced power to balance the steady state power demand. The energy management strategy for battery/SC HESS in a standalone AC MG is validated in simulation study using PSCAD/EMTDC.FindingsThe results show that the energy management strategy of HESS maintains the bus voltage and eliminates the unbalance condition under single-phase load. In addition, with the SC to absorb the reactive power and unbalanced active power, the unnecessary power loss in battery is reduced with shown less accumulate depth of discharge and higher average efficiency.Originality/valueWith this technology, the service life of the HESS can be extended and the total cost can be reduced.


2020 ◽  
Vol 1 (1) ◽  
pp. 107-120
Author(s):  
Peiqing Li ◽  
Huile Wang ◽  
Zixiao Xing ◽  
Kanglong Ye ◽  
Qipeng Li

PurposeThe operation state of lithium-ion battery for vehicle is unknown and the remaining life is uncertain. In order to improve the performance of battery state prediction, in this paper, a joint estimation method of state of charge (SOC) and state of health (SOH) for lithium-ion batteries based on multi-scale theory is designed.Design/methodology/approachIn this paper, a joint estimation method of SOC and SOH for lithium-ion batteries based on multi-scale theory is designed. The venin equivalent circuit model and fast static calibration method are used to fit the relationship between open-circuit voltage and SOC, and the resistance and capacitance parameters in the model are identified based on exponential fitting method. A battery capacity model for SOH estimation is established. A multi-time scale EKF filtering algorithm is used to estimate the SOC and SOH of lithium-ion batteries.FindingsThe SOC and SOH changes in dynamic operation of lithium-ion batteries are accurately predicted so that batteries can be recycled more effectively in the whole vehicle process.Originality/valueA joint estimation method of SOC and SOH for lithium-ion batteries based on multi-scale theory is accurately predicted and can be recycled more effectively in the whole vehicle process.


Sign in / Sign up

Export Citation Format

Share Document