agricultural matrix
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 17)

H-INDEX

14
(FIVE YEARS 3)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260344
Author(s):  
Marlis R. Douglas ◽  
Steven M. Mussmann ◽  
Tyler K. Chafin ◽  
Whitney J. B. Anthonysamy ◽  
Mark A. Davis ◽  
...  

Ecological restoration can promote biodiversity conservation in anthropogenically fragmented habitats, but effectiveness of these management efforts need to be statistically validated to determine ’success.’ One such approach is to gauge the extent of recolonization as a measure of landscape permeability and, in turn, population connectivity. In this context, we estimated dispersal and population connectivity in prairie vole (Microtus ochrogaster; N = 231) and meadow vole (M. pennsylvanicus; N = 83) within five tall-grass prairie restoration sites embedded within the agricultural matrix of midwestern North America. We predicted that vole dispersal would be constrained by the extent of agricultural land surrounding restored habitat patches, spatially isolating vole populations and resulting in significant genetic structure. We first employed genetic assignment tests based on 15 microsatellite DNA loci to validate field-derived species-designations, then tested reclassified samples with multivariate and Bayesian clustering to assay for spatial and temporal genetic structure. Population connectivity was further evaluated by calculating pairwise FST, then potential demographic effects explored by computing migration rates, effective population size (Ne), and average relatedness (r). Genetic species assignments reclassified 25% of initial field identifications (N = 11 M. ochrogaster; N = 67 M. pennsylvanicus). In M. ochrogaster population connectivity was high across the study area, reflected in little to no spatial or temporal genetic structure. In M. pennsylvanicus genetic structure was detected, but relatedness estimates identified it as kin-clustering instead, underscoring social behavior among populations rather than spatial isolation as the cause. Estimates of Ne and r were stable across years, reflecting high dispersal and demographic resilience. Combined, these metrics suggest the agricultural matrix is highly permeable for voles and does not impede dispersal. High connectivity observed confirms that the restored landscape is productive and permeable for specific management targets such as voles and also demonstrates population genetic assays as a tool to statistically evaluate effectiveness of conservation initiatives.


Author(s):  
Anjaharinony A. N. A. Rakotomalala ◽  
Annemarie Wurz ◽  
Ingo Grass ◽  
Dominic A. Martin ◽  
Kristina Osen ◽  
...  

AbstractUnderstanding how land-use change affects biodiversity is a fundamental step to develop effective conservation strategies in human-modified tropical landscapes. Here, we analyzed how land-use change through tropical small-scale agriculture affects endemic, exotic, and non-endemic native ant communities, focusing on vanilla landscapes in north-eastern Madagascar, a global biodiversity hotspot. First, we compared ant species richness and species composition across seven land-use types: old-growth forest, forest fragment, forest-derived vanilla agroforest, fallow-derived vanilla agroforest, woody fallow, herbaceous fallow, and rice paddy. Second, we assessed how environmental factors drive ant species richness in the agricultural matrix to identify management options that promote endemic and non-endemic native while controlling exotic ant species. We found that old-growth forest, forest fragment, and forest-derived vanilla agroforest supported the highest endemic ant species richness. Exotic ant species richness, by contrast, was lowest in old-growth forest but highest in herbaceous fallows, woody fallows, and rice paddy. Rice paddy had the lowest non-endemic native ant species richness. Ant species composition differed among land-use types, highlighting the uniqueness of old-growth forest in harboring endemic ant species which are more sensitive to disturbance. In the agricultural matrix, higher canopy closure and landscape forest cover were associated with an increase of endemic ant species richness but a decrease of exotic ant species richness. We conclude that preserving remnant forest fragments and promoting vanilla agroforests with a greater canopy closure in the agricultural matrix are important management strategies to complement the role of old-growth forests for endemic ant conservation in north-eastern Madagascar.


Oryx ◽  
2021 ◽  
pp. 1-8
Author(s):  
Hernán G. Álvarez ◽  
Galo Zapata-Ríos

Abstract In Latin America, the jaguar Panthera onca is one of the most persecuted and hunted carnivores as a result of its depredation of livestock. In north-west Ecuador jaguar populations are highly threatened, and the largest known population (20–30 individuals) is in El Pambilar Wildlife Refuge, a wet tropical forest surrounded by degraded forests and an agricultural matrix. As the killing of jaguars is one of the main threats to this population, its conservation depends on the perceptions and behaviour of the people living in this region. We interviewed people from 159 households (64% of the total) in eight communities in the buffer zone of the Wildlife Refuge, to examine people's perceptions of any harm caused by jaguars, and to determine the factors that influence these perceptions. In general, people perceived that jaguars caused little harm to their domestic animals or to themselves. However, our models showed that young people with a low level of formal education are the demographic group most likely to hold negative attitudes towards the jaguar, suggesting this group could potentially benefit from involvement in environmental education and awareness programmes.


Oryx ◽  
2021 ◽  
pp. 1-8
Author(s):  
J. Philip B. Faure ◽  
Lourens H. Swanepoel ◽  
Deon Cilliers ◽  
Jan A. Venter ◽  
Russell A. Hill

Abstract Populations of carnivore species outside protected areas may be of considerable importance for conservation, as many protected areas do not provide sufficient space for viable populations. Data on carnivore population sizes and trends are often biased towards protected areas, and few studies have examined the role of unprotected areas for carnivore conservation. We used camera-trapping data and spatial capture–recapture models to estimate population densities for four sympatric carnivores: the African leopard Panthera pardus, spotted hyaena Crocuta crocuta, brown hyaena Parahyaena brunnea and African civet Civettictis civetta in Platjan, a predominantly agricultural, mixed land-use system, South Africa. Mean densities per 100 km2 for the leopard were 2.20 (95% CI 1.32–3.68) and 2.18 (95% CI 1.32–3.61) for left and right flank data, respectively; spotted hyaena, 0.22 (95% CI 0.06–0.81); brown hyaena, 0.74 (95% CI 0.30–1.88); and African civet 3.60 (95% CI 2.34–5.57; left flanks) and 3.71 (95% CI 2.41–5.72; right flanks). Our results indicate that although densities are lower than those reported for protected areas, humans and predators coexist in this unprotected agricultural matrix. We suggest that increased conservation effort should be focused in such areas, to mitigate human–carnivore conflicts. Our study improves the knowledge available for carnivore populations on privately owned, unprotected land, and may benefit conservation planning.


2021 ◽  
Vol 10 (11) ◽  
pp. e487101119897
Author(s):  
Yves Rafael Bovolenta ◽  
Diego Resende Rodrigues ◽  
Edmilson Bianchini ◽  
José Antonio Pimenta

The size and spatial structures of populations are a synthesis of demographic attributes and indicators of competitive ability, colonization, and survival. In this study, the objective was to analyze the height and spatial pattern of an understory and canopy/emergent tree populations group in two protected fragments of seasonal semideciduous forest, one with a history of selective logging and another without selective logging evidences. Six species with high importance values (IV) from different guilds were selected and height and spatial pattern analysis was realized in both areas. Then, comparison of results was realized in an area with history of selective logging and another without selective logging evidences. Differences in height and spatial pattern were found between the two areas, including species not directly exploited. In Logged Forest the size structure for all species presented a higher coefficient of skewness, showing a greater proportion of young trees. Random distribution was observed for the majority of species in both areas. Some emergent/canopy species had a deficit of individuals in the largest size classes and the majority of understory species showed more individuals in Logged Forest. Selective Logging changed the pattern of populations. Selecting species based on IV together with spatial patterns data contribute to demonstrating the impacts of exploitation. The Logged Forest is surrounded by an agricultural matrix, limiting arrival and dispersion of propagules of shade-tolerant species. Efforts to connect surroundings fragments to Logged Forest will be necessary.


2021 ◽  
Author(s):  
Marciana Brandalise ◽  
Silvia Vendruscolo Milesi ◽  
Tanise Luisa Sausen ◽  
Vanderlei Secretti Decian

Abstract Changes in characteristics of landscape adjacent to forest fragments due to anthropic actions result in increased invasion of non-native species and biodiversity loss. The aim of this study was to evaluate the invasion process of Hovenia dulcis (Thunb.) in forest fragments with different size and shape in order to relate the behavior of the invasion with landscape metrics. As a result, shape and size of the forest fragments do not influence the abundance of H. dulcis. However, a greater number of H. dulcis individuals are concentrated in the edge areas. The canopy, declivity and land use were not associated with the abundance of H. dulcis. The high abundance at the edge of forest fragments highlights the dynamics of the landscape in the study area that are marked by the agricultural matrix. The invasion process occurs regardless of the size and shape of the forest fragments.


Author(s):  
Athayde Leite de Sá Filho ◽  
Mariana Gomes Kottas ◽  
José Edilson Dos Santos Júnior ◽  
Vivianni Marques Leite dos Santos

The significant concentration of the world agricultural matrix in polluting sources and with prices subject to instabilities, such as pesticides, has increased the search of countries for alternative agroecological techniques, including urban gardens, as a way of increasing food and nutritional security in the country. population. Thus, through bibliographic research, the objective of this work consists of a descriptive narrative about the potential of urban agriculture, by studying the evolution, challenges and perspectives, consolidating itself in the Brazilian agroecological matrix and contributing in the long run to greater decentralization of food production with less dependence on pesticides. In this sense, Brazil, benefited by natural factors, has favorable conditions for the exploitation of this form of agriculture and experiences great evolution, with urban gardens being among the fastest growing in the country and being one of the most competitive sources of the Brazilian agroecological matrix. However, the need for incentive policies, awareness of the population, planning of farming spaces in urban environments, in addition to creating a new incentive policy for urban agriculture and making greater investments in research and development appear as important objectives to be achieved so that urban gardens can, in fact, consolidate themselves on the national scene.


2020 ◽  
Vol 4 ◽  
Author(s):  
Cecilia González González ◽  
Tania Lara García ◽  
Lev Jardón-Barbolla ◽  
Mariana Benítez

Biodiversity is known to be influenced by agricultural practices in many ways. However, it is necessary to understand how this relation takes place in particular agroecosystems, sociocultural contexts and for specific biological groups, especially in highly biodiverse places. Also, in order to systematically study and track how biodiversity responds or changes with agricultural practices, it is necessary to find groups that can be used as practical indicators. We conduct a study of beetle (Coleoptera) diversity in maize-based agricultural plots with heterogeneous management practices in the Central Valleys of Oaxaca, Mexico, a region with outstanding biodiversity and a long agricultural history. We use a mixture of local knowledge and multivariate statistics to group the plots into two broad and contrasting management categories (traditional vs. industrialized). Then, we present an analysis of Coleopteran diversity for each category, showing higher levels across different diversity indexes for the traditional plots. Specifically, Coleopteran guilds associated with natural pest control and soil conservation are more common in traditional plots than in industrialized ones, while herbivorous beetles are more abundant in the second. Also, our results let us postulate the Curculionidae family as an indicator of both management type and overall Coleopteran diversity in the agricultural lands of the study site. We discuss our results in terms of the agricultural matrix quality and its role in strategies that favor the coexistence of culturally meaningful agricultural systems and local biodiversity.


2020 ◽  
Vol 4 (2) ◽  
pp. 229-240
Author(s):  
Claire Kremen

How do we redesign agricultural landscapes to maintain their productivity and profitability, while promoting rather than eradicating biodiversity, and regenerating rather than undermining the ecological processes that sustain food production and are vital for a liveable planet? Ecological intensification harnesses ecological processes to increase food production per area through management processes that often diversify croplands to support beneficial organisms supplying these services. By adding more diverse vegetation back into landscapes, the agricultural matrix can also become both more habitable and more permeable to biodiversity, aiding in conserving biodiversity over time. By reducing the need for costly inputs while maintaining productivity, ecological intensification methods can maintain or even enhance profitability. As shown with several examples, ecological intensification and diversification can assist in creating multifunctional landscapes that are more environmentally and economically sustainable. While single methods of ecological intensification can be incorporated into large-scale industrial farms and reduce negative impacts, complete redesign of such systems using multiple methods of ecological intensification and diversification can create truly regenerative systems with strong potential to promote food production and biodiversity. However, the broad adoption of these methods will require transformative socio-economic changes because many structural barriers continue to maintain the current agrichemical model of agriculture.


2020 ◽  
Vol 12 (17) ◽  
pp. 7149
Author(s):  
Kelly Maria Zanuzzi Palharini ◽  
Luciana Cristina Vitorino ◽  
Gisele Cristina de Oliveira Menino ◽  
Layara Alexandre Bessa

Habitat fragmentation affects lichen communities by inducing edge effects, although the dispersal of pollutants by pesticide drift from commercial crops may also provoke alterations in community structure, due to the varying sensitivity of lichen morphotypes to pollutants. In this context, we tested the hypothesis that lichen morphotype richness and diversity, and the percentage area of the trunks covered by different lichen morphotypes are modified significantly at the edges of fragments of Cerrado vegetation inserted within the agricultural matrix. We evaluated habitat fragments representing different Cerrado formations (Cerradão, Cerrado sensu stricto, and seasonal semi-deciduous forest) as well as the Emas National Park, a prominent Cerrado conservation unit. We used Generalized Linear Mixed Models (GLMMs) to test the potential of the models compiled using a mixture of phytosociological and environmental parameters, including the species, the height of the host plant (H), the circumference of its stem at breast height (CBH), total chlorophyll (TC), bark fissuring (BF) and pH, and illuminance (Lum), to explain the observed variation in the lichen morphotype richness and the percentage cover of the trunks by corticolous lichen morphotypes at the center and edge of the fragments. The central areas invariably had a greater diversity of morphotypes in all the fragments. The morphotypes considered highly sensitive to disturbance were not observed in edge areas, confirming a clear edge effect, as well as the influence of pesticide drift from the adjacent farmland matrix, on the structure of the lichen community. At both the edge and center sites, the larger trees (higher CBH) with less fissured bark tended to have the greatest diversity of lichen morphotypes, and more acidic barks had the greatest lichen cover. The models tested indicated that the variable tree species is an important determinant of the observed patterns of lichen morphotype richness and cover, either on its own or in association with pH or CBH + pH. The analyses also indicated that all the variables tested are important in some way for the definition of the percentage cover of the host trunks. The present study contributes to the understanding of the diversity of the corticolous lichen communities in the remaining fragments of Cerrado vegetation and the effects of the agricultural matrix on this community. The lichen may thus play a role as indicators of impact on other species, these organisms may provide important insights for the further investigation of the disturbance caused by the agricultural matrix on the communities of other groups of organisms.


Sign in / Sign up

Export Citation Format

Share Document