silica activity
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 8)

H-INDEX

19
(FIVE YEARS 2)

2020 ◽  
Vol 47 (12) ◽  
Author(s):  
Joshua M. R. Muir ◽  
Michael Jollands ◽  
Feiwu Zhang ◽  
Andrew M. Walker

AbstractExperimentally, silica activity (aSiO2) has been shown to have an effect on Mg diffusion in forsterite, but no fully satisfactory mechanism has yet been proposed. We calculated the effects of aSiO2 and aluminium content (the main contaminant in some recent experimental studies), and their co-effect, on Mg diffusion in forsterite, using thermodynamic minimisations of defect formation energies [calculated using density functional theory (DFT)] and a Monte-Carlo diffusion model. These two variables, in isolation, do not appreciably change the defect concentrations of forsterite and thus do not affect the diffusivity of Mg. However, when elevated together, they cause large increases in the Mg vacancy content and thus can increase the Mg diffusivity by one to six orders of magnitude depending on temperature, with little pressure dependence. This effect is largely independent of Al2O3 concentration above ~ 1 wt. ppm, and thus, for all practical purposes, should occur wherever forsterite is in the presence of enstatite. It is also largely dependent upon configurational entropy and is thus highly sensitive to the chemistry of the crystal. A low concentration of structurally bound hydroxyl groups at low temperatures (1000 K) suppresses this effect in pure forsterite, but it is likely robust in the presence of water either when alternative water sinks (such as Ti or Fe) are present, or at high temperatures (> 1500 K). This effect is also robust in the presence of ferrous iron (or other substitutional Mg defects) at all temperatures. Fe2O3 can operate like Al2O3 in this reaction and should enhance its effect. These findings explain the experimentally observed dependency of Mg diffusion of aSiO2, and elucidate how chemical activity variations in both experiments and natural settings could affect not only the diffusivity of Mg in forsterite, but of olivine-hosted cations in general.


Author(s):  
Codi Lazar

Abstract Serpentinization is a metamorphic process that can stabilize highly reduced hydrogen-rich fluids. Previous measurements of elevated CH4 and H2 concentrations in ultramafic-hosted submarine springs indicate that active serpentinization occurs along mid-ocean ridge systems at seafloor pressures (∼<500 bar) and temperatures (∼<350 °C). Serpentinites also exist at higher pressures in subduction zones; for example, during retrograde hydration of the forearc mantle wedge and during prograde deserpentinization within the subducted slab. However, many studies demonstrating the thermodynamic stability of reduced serpentinite fluids have been limited to terrestrial seafloor conditions. To investigate the redox state of serpentinite fluids at elevated pressures, phase equilibria and fluid compositions were computed for 100–700 °C and 1–20 kbar using aqueous silica activity (aSiO2(aq)) as a governing parameter. Silica-sensitive, redox-buffering assemblages were selected to be consistent with previously proposed reactions: SiO2(aq)–fayalite–magnetite (QFM), SiO2(aq)–Fe-brucite–cronstedtite, SiO2(aq)–Fe-brucite–Fe3+-serpentine, plus the silica-free buffer Fe-brucite–magnetite. Fluid species are limited to simple, zerovalent compounds. For silica-bearing redox reactions, aSiO2(aq) is buffered by coexisting ultramafic mineral assemblages in the system MgO–SiO2–H2O. Silica activity and fO2 are directly correlated, with the most reduced fluids stabilized by the least siliceous assemblages. Silica activity and fO2 increase with pressure, but are more strongly dependent on temperature, leading to greater silica enrichment and more oxidized conditions along shallow, warm subduction paths than along steeper, colder paths. Reduced fluids with mCH4/mCO2 > 1 and fO2 below QFM are present only when serpentine is stable, and are favored along all subduction trajectories except shallow P–T paths at eclogite-grade. Values of mH2 and mCO/mCO2 depend strongly on P and T, but also on the choice of redox buffer, especially whether the Fe-serpentine component is cronstedtite or Fe3+-serpentine. Methane and H2S production are thermodynamically favored throughout the P–T range of the serpentinized forearc mantle and in other settings with similar conditions; for example, deep planetary seafloors. The model offers a generalized technique for estimating the redox state of a fluid-saturated serpentinite at elevated P and T, and yields results consistent with previous petrographic and thermodynamic analyses. High-pressure serpentinization may be an important source of reduced species that could influence prebiotic chemistry, support microbial life in the deep biosphere or in deep planetary oceans, or promote greenhouse warming on early Earth.


2020 ◽  
Vol 61 (7) ◽  
Author(s):  
E M Bloch ◽  
M C Jollands ◽  
A Devoir ◽  
A -S Bouvier ◽  
M Ibañez-Mejia ◽  
...  

Abstract We report experimental data for Y, La, Lu and Hf diffusion in garnet, in which diffusant concentrations and silica activity have been systematically varied. Experiments were conducted at 950 and 1050 °C, at 1 atm pressure and oxygen fugacity corresponding to the quartz–fayalite–magnetite buffer. At Y and REE concentrations below several hundred ppm we observe both slow and fast diffusion mechanisms, which operate simultaneously and correspond to relatively high and low concentrations, respectively. Diffusivity of Y and REE is independent of silica activity over the studied range. General formulae for REE diffusion in garnet, incorporating data from this and previous studies, are  logDREE(f)(m2 s−1)=−10·24(±0·21)−221057(±4284)2·303RT(K) for the ‘fast’ REE diffusion mechanism at 1 atm pressure, and  logDREE(s)(m2 s−1)=−9·28(±0·65)−265200(±38540)+10800(±2600)×P(GPa)2·303RT(K) for the ‘slow’ REE diffusion mechanism. These slow and fast diffusion mechanisms are in agreement with previous, apparently conflicting, datasets for REE diffusion in garnet. Comparison with high-pressure experiments suggests that at high pressures (>∼1 GPa minimum) the fast diffusion mechanism no longer operates to a significant degree. When Y and/or REE surface concentrations are greater than several hundred ppm, complex concentration profiles develop. These profiles are consistent with a multi-site diffusion–reaction model, whereby Y and REE cations diffuse through, and exchange between, different crystallographic sites. Diffusion profiles of Hf do not exhibit any of the complexities observed for Y and REE profiles, and can be modeled using a standard (i.e. single mechanism) solution to the diffusion equation. Hafnium diffusion in garnet shows a negative dependence on silica activity, and is described by  logDHf(m2 s−1)=−8·85(±0·38)−299344(±15136)+12500(±900)×P(GPa)2·303RT(K)−0·52(±0·09)×log⁡10aSiO2. In many natural garnets, diffusion of both Lu and Hf would be sufficiently slow that the Lu–Hf system can be reliably used to date garnet growth. In cases in which significant Lu diffusion does occur, preferential retention of 176Hf/177Hf relative to 176Lu/177Hf will skew isochron relationships such that their apparent ages may not correspond to anything meaningful (e.g. garnet growth, peak temperature or the closure temperature of Lu or Hf). Late-stage reheating events are capable of causing larger degrees of preferential retention of 176Hf/177Hf relative to 176Lu/177Hf and partial to full resetting of the Sm–Nd system within garnet, thus increasing the separation between garnet Lu–Hf and Sm–Nd isochron dates, owing to the fact that these systems are more significantly disturbed through diffusion as more radiogenic 176Hf and 143Nd have accumulated.


2020 ◽  
Author(s):  
Alexandra Demers-Roberge ◽  
Michael Jollands ◽  
Peter Tollan ◽  
Othmar Müntener

<p>Experiments have been conducted to assess the effects of temperature, oxygen fugacity, crystallographic orientation, silica activity and chemical composition on the diffusivity and substitution mechanisms of hydrogen in orthopyroxene (opx). Axially oriented ~cuboids of natural Tanzanian opx were dehydrated at 1 bar in a gas mixing furnace (H<sub>2</sub>-CO<sub>2</sub> mix) at three different oxygen fugacities (~QFM-1,~QFM+1, ~QFM-7), and two different silica activity buffers (olivine+pyroxene or pyroxene+quartz) between 700°C and 1000°C. Profiles of hydrogen content versus distance were extracted from experimental samples using Fourier-Transform Infrared (FTIR) spectroscopy, with diffusion coefficients extracted using relevant analytical solutions and numerical approximations of Fick’s second law. Diffusion is the fastest along [001] ( D<sub>[001]</sub>>D<sub>[010]</sub>>D<sub>[100]</sub>). Fitting the diffusion coefficients to the isobaric Arrhenius relationship (logD=logD<sub>0</sub>+(-Q/(2.303RT)) gives activation energies (Q) and pre-exponential factors (logD<sub>0</sub>) between 127 to 162 kJmol<sup>-1</sup> and –4.29 to -5.42  m<sup>2</sup>s<sup>-1</sup> , respectively, for ~QFM-1.</p><p>The extracted hydrogen diffusivities are faster than previously measured by 0.5 to 5 orders of magnitude at ~1000 °C and ~700°C, respectively (Carpenter (2003), Stalder and Skogby (2003), Stalder and Behrens (2006), Stalder and al. (2007)) and are slightly slower, but strikingly close, to those of the fastest experimentally-determined diffusivity of H in olivine (Kohlstedt and Mackwell, 1998), suggesting a mechanism akin to proton-polaron exchange. This presents a paradoxical decoupling between natural and experimental observations. In most cases for mantle xenoliths, natural olivine has low water contents (<35 ppm), or are dry, and show H diffusive loss of water, where natural opx contains between 10 and 460 ppm and rarely show H diffusive loss (Demouchy and Bolfan-Casanova (2016), suggesting opx is more capable of recording the mantle water signature. With hydrogen diffusivities of olivine and opx being quite similar, however, both minerals should suffer from the same rate of dehydration during ascent, thus show low or zero water content in natural settings, which is not the case. Therefore, the inference that pyroxenes are better recorder of water in the mantle (e.g. Warren et Hauri (2014), Peslier (2010)) cannot be a simple function of diffusivities. A case study on an opx crystal showing a dehydration profile from a spinel-peridotite xenolith, hosted in an alkaline magma, from Patagonia supports this. Using the H diffusion coefficients from this study, the calculated rates of ascent of the mantle xenolith in alkaline magma are comparable to those associated with kimberlite magmas. The two suggestions we present are the following: i) Changing the boundary conditions may modify the hydrogen diffusive flux through the xenolith history and ii) The measured diffusivities would be apparent diffusivities as there might be different pathways or mechanisms of diffusion.</p>


2020 ◽  
Vol 32 (2) ◽  
pp. 251-264 ◽  
Author(s):  
Giulio Borghini ◽  
Patrizia Fumagalli

Abstract. The reaction between melt derived by mafic heterogeneities and peridotites in an upwelling mantle may form hybrid olivine-free pyroxenites. In order to evaluate the impact of these lithologies on the chemistry of primitive magmas and their ability to give rise to new mantle heterogeneities, we experimentally investigate the melting relations at 2 GPa of the model olivine-free pyroxenite Px1 (XMg=0.81, SiO2=52.9 wt %, Al2O3 = 11.3 wt %, CaO = 7.6 wt %). The subsolidus assemblage consists of clinopyroxene, orthopyroxene, and garnet. At 2 GPa, the solidus of Px1 is located between 1250 and 1280 ∘C, at a temperature about 70 ∘C lower than the solidus of fertile lherzolite. At increasing melt fraction, the sequence of mineral phase disappearance is garnet–clinopyroxene–orthopyroxene. Across the solidus, partial melting of Px1 is controlled by reaction garnet + clinopyroxene = liquid + orthopyroxene, and above 1300 ∘C, once garnet is completely consumed, by reaction clinopyroxene + orthopyroxene = liquid. Orthopyroxene is the liquidus phase, and at 1480 ∘C olivine-free pyroxenite Px1 is completely molten indicating a melting interval of about 200 ∘C. Isobaric melt productivity is similar to garnet clinopyroxenites, and it is more than 3 times that of a fertile lherzolite at 1400 ∘C. Px1 partial melts cover a wide range of XMg (0.57–0.84), with SiO2, Al2O3 and Na2O decreasing and Cr2O3 increasing with the degree of melting. CaO content in partial melts increases as long as clinopyroxene is involved in melting reactions and decreases after its exhaustion. At 2 GPa and for melting degrees higher than 10 %, Px1 produces MgO-rich basaltic andesites matching the composition of eclogitic melts in terms of silica and alkali contents but with significantly higher XMg values. These melts differ from those derived from lherzolites at 2 GPa by higher SiO2 and lower CaO contents. Their high silica activity makes them very reactive with mantle peridotite producing hybrid orthopyroxene-rich lithologies and residual websterites. Melt–rock reactions likely prevent direct extraction of melts produced by olivine-free pyroxenites.


2020 ◽  
Vol 105 (2) ◽  
pp. 149-161 ◽  
Author(s):  
Yankun Di ◽  
Wei Tian ◽  
Mimi Chen ◽  
Zefeng Li ◽  
Zhuyin Chu ◽  
...  

Abstract Water plays an important role in the generation and evolution of volcanic systems. However, the direct measurement of the pre-eruption water content of subaerial volcanic rocks is difficult, because of the degassing during magma ascent. In this study, we developed a method to calculate the pre-eruption water content of the basalts from the Cenozoic Wudalianchi–Erkeshan–Keluo (WEK) potassic volcanic field, Northeastern China, and investigated their mantle source. A water-insensitive clinopyroxene–melt thermobarometer and a water-sensitive silica activity thermobarometer were applied to these basalts. Two pressure-temperature (P-T) paths of the ascending magma were calculated using these two independent thermobarometers, with a similar P-T slope but clear offset. By adjusting the water content used in the calculation, the difference between the two P-T paths was minimized, and the water content of the WEK melts was estimated to be 4.5 ± 1.2 wt% at a pressure range of 10.1–13.5 kbar, corresponding to depths of 37–47 km. Degassing modeling shows that during the magma ascent from below the Moho to near the surface, CO2 was predominantly degassed, while the melt H2O content kept stable. Significant H2O degassing occurred until the magma ascended to 5–2 kbar. The silica activity P–T estimates of the most primary WEK samples suggest that the magmas were generated by the melting of convective mantle, which was probably facilitated by a wet upwelling plume from the mantle transition zone. The high water content found in the WEK basalts is similar to the recent reports on Phanerozoic intraplate large igneous provinces (LIPs) and supports the presence of hydrated deep mantle reservoirs as one possible source of the LIPs.


2019 ◽  
Vol 60 (6) ◽  
pp. 1163-1194 ◽  
Author(s):  
R J Giebel ◽  
A Parsapoor ◽  
B F Walter ◽  
S Braunger ◽  
M A W Marks ◽  
...  

Abstract The mineralogy and mineral chemistry of the four major sövite bodies (Badberg, Degenmatt, Haselschacher Buck and Orberg), calcite foidolite/nosean syenite xenoliths (enclosed in the Badberg sövite only) and rare extrusive carbonatites of the Kaiserstuhl Volcanic Complex in Southern Germany provide evidence for contamination processes in the carbonatitic magma system of the Kaiserstuhl. Based on textures and composition, garnet and clinopyroxene in extrusive carbonatites represent xenocrysts entrained from the associated silicate rocks. In contrast, forsterite, monticellite and mica in sövites from Degenmatt, Haselschacher Buck and Orberg probably crystallized from the carbonatitic magma. Clinopyroxene and abundant mica crystallization in the Badberg sövite, however, was induced by the interaction between calcite foidolite xenoliths and the carbonatite melt. Apatite and micas in the various sövite bodies reveal clear compositional differences: apatite from Badberg is higher in REE, Si and Sr than apatite from the other sövite bodies. Mica from Badberg is biotite- and comparatively Fe2+-rich (Mg# = 72–88). Mica from the other sövites, however, is phlogopite (Mg# up to 97), as is typical of carbonatites in general. The typical enrichment of Ba due to the kinoshitalite substitution is observed in all sövites, although it is subordinate in the Badberg samples. Instead, Badberg biotites are strongly enriched in IVAl (eastonite substitution) which is less important in the other sövites. The compositional variations of apatite and mica within and between the different sövite bodies reflect the combined effects of fractional crystallization and carbonatite-wall rock interaction during emplacement. The latter process is especially important for the Badberg sövites, where metasomatic interaction released significant amounts of K, Fe, Ti, Al and Si from earlier crystallized nosean syenites. This resulted in a number of mineral reactions that transformed these rocks into calcite foidolites. Moreover, this triggered the crystallization of compositionally distinct mica and clinopyroxene crystals around the xenoliths and within the Badberg sövite itself. Thus, the presence and composition of clinopyroxene and mica in carbonatites may be useful indicators for contamination processes during their emplacement. Moreover, the local increase of silica activity during contamination enabled strong REE enrichment in apatite via a coupled substitution involving Si, which demonstrates the influence of contamination on REE mineralization in carbonatites.


2018 ◽  
Vol 59 (9) ◽  
pp. 1731-1762 ◽  
Author(s):  
S Braunger ◽  
M A W Marks ◽  
B F Walter ◽  
R Neubauer ◽  
R Reich ◽  
...  

Abstract The Miocene Kaiserstuhl Volcanic Complex (Southwest Germany) consists largely of tephritic to phonolitic rocks, accompanied by minor nephelinitic to limburgitic and melilititic to haüynitic lithologies associated with carbonatites. Based on whole-rock geochemistry, petrography, mineralogy and mineral chemistry, combined with mineral equilibrium calculations and fractional crystallization models using the Least Square Fitting Method, we suggest that the Kaiserstuhl was fed by at least two distinct magma sources. The most primitive rock type of the tephritic to phonolitic group is rare monchiquite (basanitic lamprophyre) evolving towards tephrite, phonolitic tephrite, phonolitic noseanite, nosean phonolite and tephritic phonolite by fractional crystallization of variable amounts of clinopyroxene, amphibole, olivine, spinel/magnetite, garnet, titanite, plagioclase and nosean. During this evolution, temperature and silica activity (aSiO2) decrease from about 1100°C and aSiO2 = 0·6–0·8 to 880°C and aSiO2 = ∼0·2. At the same time, oxygen fugacity (fO2) increases from ΔFMQ* = +2–3 to ΔFMQ* = +3–5, with ΔFMQ* being defined as the log fO2 deviation from the silica activity-corrected FMQ buffer curve. Nephelinitic rocks probably derive by fractionation of mostly olivine, spinel/magnetite, melilite, perovskite and nepheline from an olivine melilititic magma. The nephelinitic rocks were formed at similarly high crystallization temperatures (>1000°C) and evolve towards limburgite (hyalo-nepheline basanite) by an increase of silica activity from about aSiO2 = 0·4–0·5 to aSiO2 = 0·5–0·9, whilst redox conditions are buffered to ΔFMQ* values of around +3. Haüyne melilitite and the more evolved (melilite) haüynite may equally be derived from an olivine melilitite by more intense olivine and less melilite fractionation combined with the accumulation of haüyne, clinopyroxene and spinel. These rocks were crystallized at very low silica activities (aSiO2 ≤0·2) and highly oxidized conditions (ΔFMQ* = +4–6). Even higher oxygen fugacities (ΔFMQ* = +6–7) determined for the carbonatite suggests a close genetic relation between these two groups. The assemblage of carbonatites with highly oxidized silicate rocks is typical of many carbonatite occurrences worldwide, at least for those associated with melilititic to nephelinitic silicate rocks. Therefore, we suggest that the existence of highly oxidized carbonate-bearing sublithospheric mantle domains is an important prerequisite to form such complexes.


Sign in / Sign up

Export Citation Format

Share Document