planar chirality
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 34)

H-INDEX

36
(FIVE YEARS 5)

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Yoshiro Urade ◽  
Kai Fukawa ◽  
Fumiaki Miyamaru ◽  
Kunio Okimura ◽  
Toshihiro Nakanishi ◽  
...  

Abstract Dynamic inversion of the planar-chiral responses of a metasurface is experimentally demonstrated in the terahertz regime. To realize this inversion, the critical transition of the checkerboard-like metallic structures is used. Resonant structures with planar chirality and their complementary enantiomeric patterns are embedded in the checkerboard. Using vanadium dioxide as a variable resistance, the metasurface is implemented in the terahertz regime. The responses of the metasurface to circularly polarized waves are then characterized by terahertz time-domain spectroscopy. Further, the sign of the circular conversion dichroism, which is closely related to the handedness of the planar chirality of the metasurface, is observed to be inverted at 0.64 THz by varying the temperature. Such invertible planar-chiral responses can be applied practically to the handedness-invertible chiral mirrors.


2021 ◽  
Author(s):  
Rosa Lopez ◽  
Claudio Palomo
Keyword(s):  

Synthesis ◽  
2021 ◽  
Author(s):  
Virginie Ratovelomanana-Vidal ◽  
Pascal Matton ◽  
Steve Huvelle ◽  
Mansour Haddad ◽  
Phannarath Phansavath

AbstractMetal-catalyzed [2+2+2] cycloaddition is a powerful tool that allows rapid construction of functionalized 6-membered carbo- and heterocycles in a single step through an atom-economical process with high functional group tolerance. The reaction is usually regio- and chemoselective although selectivity issues can still be challenging for intermolecular reactions involving the cross-[2+2+2] cycloaddition of two or three different alkynes and various strategies have been developed to attain high selectivities. Furthermore, enantioselective [2+2+2] cycloaddition is an efficient means to create central, axial, and planar chirality and a variety of chiral organometallic complexes can be used for asymmetric transition-metal-catalyzed inter- and intramolecular reactions. This review summarizes the recent advances in the field of [2+2+2] cycloaddition.1 Introduction2 Formation of Carbocycles2.1 Intermolecular Reactions2.1.1 Cyclotrimerization of Alkynes2.1.2 [2+2+2] Cycloaddition of Two Different Alkynes2.1.3 [2+2+2] Cycloaddition of Alkynes/Alkenes with Alkenes/Enamides2.2 Partially Intramolecular [2+2+2] Cycloaddition Reactions2.2.1 Rhodium-Catalyzed [2+2+2] Cycloaddition2.2.2 Molybdenum-Catalyzed [2+2+2] Cycloaddition2.2.3 Cobalt-Catalyzed [2+2+2] Cycloaddition2.2.4 Ruthenium-Catalyzed [2+2+2] Cycloaddition2.2.5 Other Metal-Catalyzed [2+2+2] Cycloaddition2.3 Totally Intramolecular [2+2+2] Cycloaddition Reactions3 Formation of Heterocycles3.1 Cycloaddition of Alkynes with Nitriles3.2 Cycloaddition of 1,6-Diynes with Cyanamides3.3 Cycloaddition of 1,6-Diynes with Selenocyanates3.4 Cycloaddition of Imines with Allenes or Alkenes3.5 Cycloaddition of (Thio)Cyanates and Isocyanates3.6 Cycloaddition of 1,3,5-Triazines with Allenes3.7 Cycloaddition of Aldehydes with Enynes or Allenes/Alkenes3.8 Totally Intramolecular [2+2+2] Cycloaddition Reactions4 Conclusion


Author(s):  
Karl-Heinz Ernst ◽  
Bahaaeddin Irziqat ◽  
Aleksandra Cebrat ◽  
Milos Baljozovic ◽  
Kevin Martin ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pei-Chao Zhang ◽  
Yin-Lin Li ◽  
Jiafeng He ◽  
Hai-Hong Wu ◽  
Zhiming Li ◽  
...  

AbstractThe simultaneous construction of two different chiralities via a simple operation poses considerable challenge. Herein a cationic gold-catalyzed asymmetric hydroarylation of ortho-alkynylaryl ferrocenes derivatives is developed, which enable the simultaneous construction of axial and planar chirality. The here identified TY-Phos derived gold complex is responsible for the high yield, good diastereoselectivity (>20:1 dr), high enantioselectivities (up to 99% ee) and mild conditions. The catalyst system also shows potential application in the synthesis of chiral biaryl compounds. The cause of high enantioselectivity of this hydroarylation is investigated with density functional theory caculation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiabin Yao ◽  
Wanhua Wu ◽  
Chao Xiao ◽  
Dan Su ◽  
Zhihui Zhong ◽  
...  

AbstractStimuli-responsive intelligent molecular machines/devices are of current research interest due to their potential application in minimized devices. Constructing molecular machines/devices capable of accomplishing complex missions is challenging, demanding coalescence of various functions into one molecule. Here we report the construction of intelligent molecular chiroptical photoswitches based on azobenzene-fused bicyclic pillar[n]arene derivatives, which we defined as molecular universal joints (MUJs). The Z/E photoisomerization of the azobenzene moiety of MUJs induces rolling in/out conformational switching of the azobenzene-bearing side-ring and consequently leads to planar chirality switching of MUJs. Meanwhile, temperature variation was demonstrated to also cause conformational/chiroptical inversion due to the significant entropy change during the ring-flipping. As a result, photo-induced chiroptical switching could be prohibited when the temperature exceeded an upper limit, demonstrating an intelligent molecular photoswitch having over-temperature protection function, which is in stark contrast to the low-temperature-gating effect commonly encountered.


Synthesis ◽  
2021 ◽  
Author(s):  
Chuan He ◽  
Bing Zu ◽  
Yonghong Guo ◽  
Jie Ke

AbstractIn recent years, transition-metal-catalyzed enantioselective C–H bond functionalization using chiral transient directing groups (cTDGs) or native directing groups (NDGs) has emerged as a powerful and attractive­ synthetic approach to streamline the synthesis of chiral molecules­. This short review focuses on recent advances on imine-based cTDGs strategies and native amine and carboxylic acid directed strategies for the asymmetric functionalization of various C–H bonds. We have endeavored to highlight the great potential of this methodology and hope that this review will inspire further research in this area.1 Introduction2 Transient-Directing-Group-Enabled Enantioselective C–H Functionalization2.1 Generation of Central Chirality2.2 Generation of Axial Chirality2.3 Generation of Planar Chirality3 Native-Directing-Group-Enabled Enantioselective C–H Functionalization3.1 Native Amines as Directing Groups3.2 Native Carboxylic Acids as Directing Groups4 Conclusions and Outlook


Author(s):  
Zhaona Liu ◽  
Huacheng Zhang ◽  
Jie Han

Combination of Nobel macrocycle—crown ether and star macrocycle—pillararenes together in organic synthesis and material science is significant to grant thus obtained hybrid systems, rigid/flexible structural architecture, induced planar chirality, negative...


Sign in / Sign up

Export Citation Format

Share Document