transversal filter
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 32)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Author(s):  
David Moss

Abstract We propose and experimentally demonstrate a microwave photonic intensity differentiator based on a Kerr optical comb generated by a compact integrated micro-ring resonator (MRR). The on-chip Kerr optical comb, containing a large number of comb lines, serves as a high-performance multi-wavelength source for the transversal filter, which will greatly reduce the cost, size, and complexity of the system. Moreover, owing to the compactness of the integrated MRR, up to 200-GHz frequency spacing of the Kerr optical comb can be achieved, enabling a potential operation bandwidth of over 100 GHz. By programming and shaping individual comb lines according to the calculated tap weights, a reconfigurable intensity differentiator with variable differentiation orders can be realized. The operation principle is theoretically analyzed, and experimental demonstrations of first-order, second-order, and third-order differentiation functions based on the principle are presented. The radio frequency (RF) amplitude and phase responses of multi-order intensity differentiations are characterized, and system demonstrations of real-time differentiations for Gaussian input signal are also performed. The experimental results show good agreement with theory, confirming the effectiveness of our approach.


2021 ◽  
Author(s):  
Carlos Udaondo ◽  
Carlos Collado ◽  
Jordi Mateu ◽  
Rafael Perea-Robles ◽  
Yazid Yusud ◽  
...  

2021 ◽  
Author(s):  
David Moss

Abstract We demonstrate a photonic radio frequency (RF) transversal filter based on an integrated optical micro-comb source featuring a record low free spectral range of 49 GHz yielding 80 micro-comb lines across the C-band. This record-high number of taps, or wavelengths for the transversal filter results in significantly increased performance including a QRF factor more than four times higher than previous results. Further, by employing both positive and negative taps, an improved out-of-band rejection of up to 48.9 dB is demonstrated using Gaussian apodization, together with a tunable centre frequency covering the RF spectra range, with a widely tunable 3-dB bandwidth and versatile dynamically adjustable filter shapes. Our experimental results match well with theory, showing that our transversal filter is a competitive solution to implement advanced adaptive RF filters with broad operational bandwidths, high frequency selectivity, high reconfigurability, and potentially reduced cost and footprint. This approach is promising for applications in modern radar and communications systems.


2021 ◽  
Vol 263 (2) ◽  
pp. 4683-4691
Author(s):  
Lei Wang ◽  
Kean Chen ◽  
Jian Xu ◽  
Wang Qi

In recent years, more attention has been paid to the performance of algorithm in active noise control (ANC). Compared with filtered-x LMS (FxLMS) algorithm based on stochastic gradient descent, filtered-x RLS (FXRLS) algorithm has faster convergence speed and better tracking performance at the cost of high computational complexity. In order to reduce the computation, fast transversal filter (FTF) algorithm can be used in ANC system. In this paper, simplified multi-channel FXFTF algorithms are presented, and the convergence speed and noise reduction performance of different multichannel algorithms are simulated and compared, and the numerical stability of the algorithms are analyzed.


Author(s):  
David Moss

Integrated Kerr micro-combs, a powerful source of many wavelengths for photonic RF and microwave signal processing, are particularly useful for transversal filter systems. They have many advantages including a compact footprint, high versatility, large numbers of wavelengths, and wide bandwidths. We review recent progress on photonic RF and microwave high bandwidth temporal signal processing based on Kerr micro-combs with spacings from 49-200GHz. We cover integral and fractional Hilbert transforms, differentiators as well as integrators. The potential of optical micro-combs for RF photonic applications in functionality and ability to realize integrated solutions is also discussed.


2021 ◽  
Author(s):  
David Moss

Abstract Integrated Kerr microcombs are emerging as a powerful tool as sources of multiple wavelength channels for photonic RF and microwave signal processing mainly in the context of transversal filters. They offer a compact device footprint, very high versatility, large numbers of wavelengths, and wide Nyquist bands. Here, we present our recent progress on Kerr microcomb-based photonic RF and microwave reconfigurable filters, based both on transversal filter methods and on RF to optical bandwidth scaling. We compare and contrast results achieved with wide comb spacing combs (200GHz) with more finely spaced (49GHz) microcombs. The strong potential of optical micro-combs for RF photonics applications in terms of functions and integrability is also discussed.


2021 ◽  
Author(s):  
david moss

Abstract We demonstrate a photonic RF integrator based on an integrated soliton crystal micro-comb source. By multicasting and progressively delaying the input RF signal using a transversal structure, the input RF signal is integrated discretely. Up to 81 wavelengths are provided by the microcomb source, which enable a large integration time window of ~6.8 ns, together with a time resolution as fast as ~84 ps. We perform signal integration of a diverse range of input RF signals including Gaussian pulses with varying time widths, dual pulses with varying time intervals and a square waveform. The experimental results show good agreement with theory. These results verify our microcomb-based integrator as a competitive approach for RF signal integration with high performance and potentially lower cost and footprint.


2021 ◽  
Author(s):  
David Moss

Abstract Integrated Kerr micro-combs, a powerful source of many wavelengths for photonic RF and microwave signal processing, are particularly useful for transversal filter systems. They have many advantages including a compact footprint, high versatility, large numbers of wavelengths, and wide bandwidths. We present our recent work on photonic RF and microwave high bandwidth temporal signal processing based on Kerr micro-combs with spacings from 49-200GHz. We cover integral and fractional Hilbert transforms, differentiators as well as integrators. The potential of optical micro-combs for RF photonic applications in functionality and ability to realize integrated solutions is also discussed.


2021 ◽  
Author(s):  
Mengxi Tan ◽  
Xingyuan Xu ◽  
David Moss

Abstract Integrated Kerr micro-combs are a powerful source of multiple wavelength channels for photonic radio frequency (RF) and microwave signal processing, particularly for transversal filter systems. They offer significant advantages featuring a compact device footprint, high versatility, large numbers of wavelengths, and wide Nyquist bands. We present our recent progress on photonic RF and microwave high bandwidth temporal signal processing based on Kerr micro-combs with comb spacings from 49GHz to 200GHz. We focus on integral and fractional Hilbert transforms, differentiators as well as integrators. The future potential of optical micro-combs for RF photonic applications in terms of functionality and ability to realize integrated solutions is also discussed.


Sign in / Sign up

Export Citation Format

Share Document