quartz arenite
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 30)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 25 (6) ◽  
pp. 995-1001
Author(s):  
T.J. Fregene ◽  
N. Onyeachonam

This study evaluate the Chemical classification of sediments in JVX well, Greater Ughelli Depo belt Niger Delta Basin. Samples collected from different intervals were analyzed using geochemical proxies. Agbada Formation was suggested for the sampled intervals due to the presence of shaleand sand intercalations. lithofacies units gotten from sampled intervals are Sand, Shale and Shaly sand facies . The sands are milky in colour, translucent to opaque, medium to coarse grain, subangular to subrounded and are moderately sorted while the shales are Grey in colour,fissile with the presence of lignite streak and calcareous materials.The geochemical studies of the sediments revealed that SiO2 is the dominant oxide followed by Al2O3 and Fe2O3 which constitutes over 90% while others like CaO, K2O, TiO2, Na2O and MgO constitute 10%. The sediments were classified as Fe-shale, Fe-sand and Quartz arenite. Samples that plotted in the quartz arenites region suggests an intense degree of weathering and reworking. The SiO2/Al2O3 ratios for the sediments in the well are appreciably high indicating that the samples have been heavily weathered, evidenced from the enrichment of quartz and depletion of feldspars. Also, the relatively high concentrations of Fe2O3 and TiO2 is an indication of iron-titanium minerals such as haematite and anatase retiles.


2021 ◽  
Vol 54 (2B) ◽  
pp. 28-41
Author(s):  
Hamid A. A. Alsultan

In the Rumaila oilfields in southern Iraq, the Zubair Formation was deposited in a shallow environment as three main facies, delta plain, backshore, and delta front depositional conditions indicating a transition from delta front and delta plain to a highstand level due to the finning upward mode. The facies of the Zubair clasts show well-sorted quartz arenite sandstone, poorly sorted quartz arenite sandstone, clayey sandstone that has not been properly sorted, sandy shale, and shale lithofacies. The minor lithofacies were identified using well-logging methods (gamma ray, spontaneous potential and sonic logs) and petrography. The Zubair clasts are of transition environment that appears to be transported from freshwater and deposited in a marine environment forming many fourth-order cycles reflect sea level rise fluctuations and still-stand under tectonics developed the sequence stratigraphy. A misalignment between relative sea-level and sediment supply caused asymmetry sedimentary cycles. A shallower environment of shale-dominated rocks rich in organic matter and pyrite were exposed. The basinal shale of Ratawi at the Zubair bottom and the shallow carbonate of Shuaiba emplace on the Zubair represent the beginning of the delta build up (delta front and delta plain) to a highstand stage.


Author(s):  
N. Hicks ◽  
D.J.C. Gold ◽  
M. Ncume ◽  
L. Hoyer

Abstract A revised lithostratigraphic framework for Mozaan Group-equivalent strata within the Nkandla sub-basin is presented based on new field data, remote sensing and genetic sequence stratigraphic interpretations. Although previous literature has suggested that no Mozaan Group lithologies were deposited within the sub-basin, reinterpretations presented here indicate that 90% of the lithostratigraphy developed within the main basin occurs within the Nkandla and Mhlatuze inliers. Mozaan Group units previously defined as the Vutshini and Ekombe formations are correlated with stratigraphy from the lowermost Sinqeni Formation to the Gabela Formation. Although thinner than units within the type area in the main basin, thicknesses of the Sinqeni Formation are comparable to those observed within the White Mfolozi Inlier. A ~1 000 m composite reference profile is measured within the Mdlelanga Syncline of the Nkandla Inlier. Further profiles were measured for sequences in the Gem-Vuleka Syncline of the Nkandla Inlier, as well as within the Mhlatuze Inlier. These latter profiles, however, host only lower Mozaan Group strata. In all sections the basal portion of the sequence comprises two quartz arenite units, separated by a ferruginous shale, which hosts minor iron formation interbeds. This predominantly coarse-grained lower sequence is overlain by a shale-dominated succession with multiple sandstone interbeds. A prominent coarse-grained quartz arenite unit forms a distinct marker in the middle portion of the sequence. This is overlain by a sequence of shales and sandstones with two prominent igneous units present. Genetic sequence stratigraphic interpretations indicate cyclical deposition of dominantly shallow marine sediments with condensed sections, marked by iron formations or ferruginous shales, denoting periods of marine highstand along the southeastern margin of the Kaapvaal Craton. The evidence of Mozaan Group stratigraphy within the Nkandla sub-basin supports a passive margin tectonic model whereby deposition occurred in an arcuate shallow continental margin which opened to the southeast. The extension of Mozaan Group strata into the Nkandla sub-basin suggests that the Mozaan Basin likely formed a single depository rather than separate sub-basins as previously proposed.


2021 ◽  
Vol 38 (1) ◽  
pp. 109-118
Author(s):  
SHEKHAR GUPTA ◽  
R V Singh ◽  
Rahul Banerjee ◽  
M B Verma

The Banganapalle Formation, the lowest member of the Neoproterozoic Kurnool Group of rocks, resting over the basement granites, has been identified as the host rock for uranium in Koppunuru area in the western part of Palnad sub-basin. The uppermost arenite facies of the Banganapalle Formation is exposed on surface and shows only few bedform indicators like ripple marks, planer laminations etc. Down-hole lithological examinations on course of core drilling in Koppunuru and adjoining areas identified five recognizable lithofacies of Banganapalle Formation, viz.  basal conglomerate unit, quartzite-shale intercalated facies, and two quartz arenite facies separated by a grey shale dominated argillaceous facies. The polymictic conglomerate, with unsorted grit to pebble size clasts of granite, shale, quartzite, vein quartz and dolerite indicate short distance transportation and derivation from nearby granitoids traversed by quartz reef/dolerite dykes. Cyclic repetitions of arenaceous and argillaceous sediments in Banganapalle lithocolumn above the basal conglomerates point to alternate rhythmic marine transgression and regression regimes. These units can also be discriminated based on their sedimentary texture, bedforms and several soft-sedimentary penecontemporaneous deformational structures (PCD) like load structure, convolute bedding/laminations, and slump structures such as micro-slips, gravity faults and folds. These syn-sedimentary structures clearly indicate perturbation and submergence of the basin contemporaneous to deposition. Cross-beds suggests change in current direction/intensity while bi-directional symmetrical ripples in outcrops of upper arenite facies suggests that the Banganapalle sediments are derived from the basement granitoids exposed to the north as well as upper Cuddapah sediments to its west. Overall, the sedimentary structures, textural and composition variation of the lithounits suggest deposition of these sediments in marginal marine, inter- to supra-tidal flat environment. The porous and permeable nature of the quartz arenite and the basal conglomerates and the presence of available reductants in the form of sulphides and carbonaceous matter make them the best suited loci for fluid movement and precipitation of uranium.


Geosciences ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 232
Author(s):  
Adrian M. Hall ◽  
Hannah Mathers ◽  
Maarten Krabbendam

Glacial ripping is a newly recognized process sequence in which subglacial erosion is triggered by groundwater overpressure. Investigations in gneiss terrain in lowland Sweden indicate that ripping involves three stages of (i) hydraulic jacking, (ii) rock disruption under subglacial traction, and (iii) glacial transport of rock blocks. Evidence for each stage includes, respectively, dilated fractures with sediment fills, disintegrated roches moutonnées, and boulder spreads. Here, we ask: can glacial ripping also occur in sedimentary rocks, and, if so, what are its effects? The case study area is in hard, thinly bedded, gently dipping Cambrian quartz-arenites at Loch Eriboll, NW Scotland. Field surveys reveal dilated, sediment filled, bedding-parallel fractures, open joints, and brecciated zones, interpreted as markers for pervasive, shallow penetration of the quartz-arenite by water at overpressure. Other features, including disintegrated rock surfaces, boulder spreads, and monomict rubble tills, indicate glacial disruption and short distance subglacial transport. The field results together with cosmogenic isotope ages indicate that glacial ripping operated with high impact close to the former ice margin at Loch Eriboll at 17.6–16.5 ka. Glacial ripping thus can operate effectively in bedded, hard sedimentary rocks, and the accompanying brecciation is significant—if not dominant—in till formation. Candidate markers for glacial ripping are identified in other sedimentary terrains in former glaciated areas of the Northern Hemisphere.


Author(s):  
Adrian Malcolm Hall ◽  
Hannah Mathers ◽  
Maarten Krabbendam

Glacial ripping is a newly recognized process sequence in which subglacial erosion is triggered by groundwater overpressure. Investigations in gneiss terrain in lowland Sweden indicate that ripping involves three stages of (i) hydraulic jacking, (ii) rock disruption under subglacial traction and (iii) glacial transport of rock blocks. Evidence for each stage includes, respectively, dilated fractures with sediment fills, disintegrated roches moutonnées and boulder spreads. Here we ask: can glacial ripping also occur in sedimentary rocks, and, if so, what are its effects? The case study area is in hard, thinly bedded, gently dipping Cambrian quartz-arenites at Loch Eriboll, NW Scotland. Field surveys reveal dilated, sediment filled, bedding-parallel fractures, open joints and brecciated zones, interpreted as markers for pervasive, shallow penetration of the quartz-arenite by water at over-pressure. Other features, including disintegrated rock surfaces, boulder spreads and monomict rubble tills, indicate glacial disruption and short distance subglacial transport. The field results, together with published cosmogenic isotope ages, indicate that glacial ripping operated with high impact close to the former ice margin at Loch Eriboll at 17.6-16.5 ka. Glacial ripping thus can operate effectively in bedded, hard sedimentary rocks and the accompanying brecciation is significant – if not dominant - in till formation. Candidate markers for glacial ripping are identified in other sedimentary terrains in former glaciated areas of the Northern Hemisphere.


2021 ◽  
Author(s):  
Nurit Taitel-Goldman ◽  
Vladimir Ezersky

Fine fraction in quartz arenite sandstones from Lower Cretaceous Hatira formation in Israel was observed by Transmission electron microscope (TEM). Samples were collected from Hatira and Ramon craters located in southern part of Israel and from Manara cliff from the northern part of Israel. The additional phases cause yellow, red, dark red and dark violet colors of the layered sandstones. The motivation was to identify the minerals of the fine factions that cause the variations in the colors. The minerals observed were clay minerals, mainly kaolinite (Al4Si4O20(OH)8), some illite (K0.65Al2.0[Al0.65Si3.35O10](OH)2) and smectite. Iron oxides were goethite (FeOOH) and hematite (Fe2O3), Titanium-iron oxides observed was ilmenite (FeTiO3), and Titanium-oxides were rutile (TiO2), and anatase (TiO2). Sulphates observed were jarosite (KFe3(SO4)2(OH)6) and alunite (KAl3(SO4)2(OH)6). Some of the hematite was formed by recrystallization of goethite. Ilmenite disintegrated into small iron oxides mainly hematite. Euhedral to sub-hedral rutile (TiO2) and anatase (TiO2) were preserved in clay-minerals. Crystals of alunite and jarosite were observed in sandstones in both craters. They probably crystallized due to some transgression of the Thetis Sea.


Solid Earth ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 665-689
Author(s):  
Peleg Haruzi ◽  
Regina Katsman ◽  
Matthias Halisch ◽  
Nicolas Waldmann ◽  
Baruch Spiro

Abstract. This paper presents a detailed description and evaluation of a multi-methodological petrophysical approach for the comprehensive multi-scale characterization of reservoir sandstones. The suggested methodology enables the identification of links between Darcy-scale permeability and an extensive set of geometrical, textural and topological rock descriptors quantified at the pore scale. This approach is applied to the study of samples from three consecutive sandstone layers of Lower Cretaceous age in northern Israel. These layers differ in features observed at the outcrop, hand specimen, petrographic microscope and micro-CT scales. Specifically, laboratory porosity and permeability measurements of several centimetre-sized samples show low variability in the quartz arenite (top and bottom) layers but high variability in the quartz wacke (middle) layer. The magnitudes of this variability are also confirmed by representative volume sizes and by anisotropy evaluations conducted on micro-CT-imaged 3-D pore geometries. Two scales of directional porosity variability are revealed in quartz arenite sandstone of the top layer: the pore size scale of ∼0.1 mm in all directions and ∼3.5 mm scale related to the occurrence of high- and low-porosity horizontal bands occluded by Fe oxide cementation. This millimetre-scale variability controls the laboratory-measured macroscopic rock permeability. More heterogeneous pore structures were revealed in the quartz wacke sandstone of the intermediate layer, which shows high inverse correlation between porosity and clay matrix in the vertical direction attributed to depositional processes and comprises an internal spatial irregularity. Quartz arenite sandstone of the bottom layer is homogenous and isotropic in the investigated domain, revealing porosity variability at a ∼0.1 mm scale, which is associated with the average pore size. Good agreement between the permeability upscaled from the pore-scale modelling and the estimates based on laboratory measurements is shown for the quartz arenite layers. The proposed multi-methodological approach leads to an accurate petrophysical characterization of reservoir sandstones with broad ranges of textural, topological and mineralogical characteristics and is particularly applicable for describing anisotropy and heterogeneity of sandstones on various rock scales. The results of this study also contribute to the geological interpretation of the studied stratigraphic units.


2021 ◽  
Vol 36 (1) ◽  
pp. 121-135
Author(s):  
Šime Bilić ◽  
Vesnica Garašić

In the scope of this research, the petrographic and geochemical analyses of clastic sedimentary rocks from the St. Barbara, copper and iron ore mine in Rude near Samobor, have been made, aiming to classify and determine the provenance and environment of formation of clastic sedimentary rocks, as well as the influence of hydrothermal fluids on their properties. Eight samples were collected in total from different locations in the mine. Six of those samples have been studied in detail. The results showed structural and geochemical variability and uneven hydrothermal alteration intensity in the samples. Based on petrographic analyses, three rocks are classified as sublithoarenite, quartz arenite and quartz greywacke. Three of the samples are classified as ore breccia, ore sandstone, and ore silt-sandstone due to the pronounced hydrothermal alterations and ore mineralisation. Comprehensively, petrographic and geochemical analyses indicate that the source rocks of the investigated clastic sedimentary rocks were felsic (La/Sc = 0.9-6.2; Th/Sc = 1.3-2.4), most probably sedimentary, possibly resedimented rocks. The extent of source rock weathering was very high (Chemical Index of Alteration CIA = 52.1 - 81.3 %) and the geotectonic position of the sedimentary basin was very likely to be at the passive continental margin.


2021 ◽  
Author(s):  
R B MacNaughton ◽  
K M Fallas

A composite reference section for the upper Ediacaran and lower Cambrian is documented for a location near Moose Horn River in Wrigley Lake map area (NTS 95-M), Mackenzie Mountains, Northwest Territories. Four measured stratigraphic sections cover, in ascending order: the uppermost Sheepbed Formation; the informal Sheepbed carbonate; the lower, middle, and upper members of the Backbone Ranges Formation; the Sekwi Formation; and the lowermost beds of the Rockslide Formation. The uppermost Sheepbed Formation is dominated by dark-weathering shale and siltstone. The Sheepbed carbonate (440 m) lies conformably on the Sheepbed Formation and consists of limestone, dolostone, and dolomitic siltstone, including several horizons of rudstone with clasts up to boulder size. The upper surface of the Sheepbed carbonate has been eroded and the unit thins to a zero edge to the east. The lower member of the Backbone Ranges Formation (253 m) is heterolithic, including interbedded quartzose siltstone and quartzose sandstone, quartz arenite (locally with horizons of quartz pebbles), and dolostone to dolomitic sandstone. The middle member of the Backbone Ranges Formation (93 m) consists mainly of pink to grey-weathering limestone with red mudstone partings. The upper member (501.5 m) is dominated by quartz arenite, but also contains intervals of siltstone. Partway through the upper member there is a marker unit of dolostone to dolomitic sandstone that previous work suggests is a tongue of the Ediacaran Risky Formation. Based on regional correlations, the top of this marker may approximate the Ediacaran-Cambrian boundary in this section. The Sekwi Formation lies abruptly upon the Backbone Ranges Formation. The contact is unconformable at this locality and mapping in the area indicates eastward erosional removal of the upper member of the Backbone Ranges Formation beneath the Sekwi Formation. The Sekwi Formation here consists of variegated siltstone with lesser dolostone, limestone, and quartz sandstone. An abrupt contact with nodular limestone and grey shale of the overlying Rockslide Formation approximates the base of Cambrian Series 3.


Sign in / Sign up

Export Citation Format

Share Document