tapered optical fiber
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 66)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Ryan J. Gelly ◽  
Dylan Renaud ◽  
Xing Liao ◽  
Benjamin Pingault ◽  
Stefan Bogdanovic ◽  
...  

AbstractIn WSe2 monolayers, strain has been used to control the energy of excitons, induce funneling, and realize single-photon sources. Here, we developed a technique for probing the dynamics of free excitons in nanoscale strain landscapes in such monolayers. A nanosculpted tapered optical fiber is used to simultaneously generate strain and probe the near-field optical response of WSe2 monolayers at 5 K. When the monolayer is pushed by the fiber, its lowest energy states shift by as much as 390 meV (>20% of the bandgap of a WSe2 monolayer). Polarization and lifetime measurements of these red-shifting peaks indicate they originate from dark excitons. We conclude free dark excitons are funneled to high-strain regions during their long lifetime and are the principal participants in drift and diffusion at cryogenic temperatures. This insight supports proposals on the origin of single-photon sources in WSe2 and demonstrates a route towards exciton traps for exciton condensation.


2022 ◽  
Author(s):  
Tong Wang ◽  
Junfeng Jiang ◽  
Kun Liu ◽  
Shuang Wang ◽  
Panpan Niu ◽  
...  

Abstract We proposed and demonstrated a flexible, endoscopic, and minimally invasive coherent anti-Raman Stokes scattering (CARS) measurement method for single-cell application, employing a tapered optical fiber probe. A few-mode fiber (FMF), whose generated four-wave mixing band is out of CARS signals, was selected to fabricate tapered optical fiber probes, deliver CARS excitation pulses, and collect CARS signals. The adiabatic tapered fiber probe with a diameter of 11.61 µm can focus CARS excitation lights without mismatch at the focal point. The measurements for proof-of-concept were made with methanol, ethanol, cyclohexane, and acetone injected into simulated cells. The experimental results show that the tapered optical fiber probe can detect carbon-hydrogen (C–H) bond-rich substances and their concentration. To our best knowledge, this optical fiber probe provides the minimum size among probes for detecting CARS signals. These results pave the way for minimally invasive live-cell detection in the future.


2021 ◽  
Vol 189 (1) ◽  
Author(s):  
Guixian Zhu ◽  
Lin Cheng ◽  
Ruogu Qi ◽  
Mizhen Zhang ◽  
Jiahao Zhao ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7553
Author(s):  
Joanna Korec ◽  
Karol A. Stasiewicz ◽  
Katarzyna Garbat ◽  
Leszek R. Jaroszewicz

This paper is a continuation of previous work and shows the enhancement of the surface plasmon resonance effect in a tapered optical fiber device. The study investigated liquid crystal cells containing a tapered optical fiber covered with a silver nanolayer, surrounded by a low refractive index liquid crystal in terms of the properties of light propagation in the taper structure. Silver films with a thickness of d = 10 nm were deposited on the tapered waist area. Measurements were performed at room temperature; liquid crystal steering voltage U from 0 to 200 V, with and without any amplitude modulation with a frequency of f = 5 Hz, and the wavelength λ ranged from 550 to 1200 nm. A significant influence of the initial arrangement of liquid crystals molecules on light propagation was observed. Three types of liquid crystal cells—orthogonal, parallel, and twist—were considered. During the measurements, resonant peaks were obtained—the position of which can also be controlled by the type of liquid crystal cells and the steering voltage. Based on the obtained results, the best parameters, such as highest peak’s width reduction, and the highest SNR value were received for twisted cells. In addition, the present work was compared with the previous work and showed the possibility of improving properties of the manufactured probes, and consequently, the surface plasmon resonance effect. In the presented paper, the novelty is mainly focused on the used materials as well as suitable changes in applied technological parameters. In contrast to gold, silver is characterized by different optic and dielectric properties, e.g., refractive index, extension coefficient, and permittivity, which results in changes in the light propagation and the SPR wavelengths.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012055
Author(s):  
Y Haddad ◽  
J Chrétien ◽  
S Margueron ◽  
J C Beugnot ◽  
G Fanjoux

Abstract We present in this work a non-destructive and non-invasive imaging spectroscopic technique with a high spatial and spectral resolution to characterize the light propagation behaviour along a centimetric length and nanometric size tapered optical fiber in operation.


2021 ◽  
Author(s):  
Diomid D. Bakurov ◽  
Oleg V. Ivanov ◽  
Laysan I. Gafurova ◽  
Maxim A. Abelmas

2021 ◽  
Author(s):  
Thu Trang Hoang ◽  
Van Dai Pham ◽  
Thanh Son Pham ◽  
Xuan Bach Nguyen ◽  
Khai Q. Le ◽  
...  

Abstract This work reports the experimental fabrication and characterization of the Er3+-doped silica microspheres (mS) and numerical investigation of the effects of size and surrounding medium on the optical properties of whispering-gallery-mode (WGM) lasers. The heat melting method of two discharge electrodes was used to produce the Er3+-doped silica mSs of diameters up to several tens of micrometers. The 125-mm diameter single-mode optical fiber was tapered with a cone angle formed by chemical etching in hydrofluoric acid (HF) solutions. It was used to produce the mSs and couple the pumped laser into mS surface as well was coupled out the lasing emission. The WGM lasers at telecom regime of ~1520-1570 nm were characterized in both clockwise (CW) and counterclockwise (CCW) propagation directions. By adjusting the coupling gap between the tapered optical fiber and the mS surface, the selectivity of the multi- or single-emitted modes of the mS laser was achieved. We performed finite-difference time-domain (FDTD) simulations to examine the size dependence and analyze the effect of the surrounding medium’s refractive index on the optical characteristics, such as emission wavelength, intensity, as well as the shape of WGM lasing emission. The facile approach and quantitative investigation of this work has attracted much attention from researchers in the micro-photonic field and may be useful in many applications from tunable single-mode lasing sensing to optical micro-devices.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Chang Kyun Ha ◽  
Kee Hwan Nam ◽  
Myeong Soo Kang

AbstractOptical nanotapers fabricated by tapering optical fibers have attracted considerable interest as an ultimate platform for high-efficiency light-matter interactions. While previously demonstrated applications relied exclusively on the low-loss transmission of only the fundamental mode, the implementation of multimode tapers that adiabatically transmit several modes has remained very challenging, hindering their use in various emerging applications in multimode nonlinear optics and quantum optics. Here, we report the realization of multimode submicron tapers that permit the simultaneous adiabatic transmission of multiple higher-order modes including the LP02 mode, through introducing deep wet-etching of conventional fiber before fiber tapering. Furthermore, as a critical application, we demonstrate fundamental-to-fundamental all-fiber third-harmonic generation with high conversion efficiencies. Our work paves the way for ultrahigh-efficiency multimode nonlinear and quantum optics, facilitating nonclassical light generation in the multimode regime, multimode soliton interactions and photonic quantum gates, and manipulation of the evanescent-field-induced optical trapping potentials of atoms and nanoparticles.


2021 ◽  
Vol 1176 (1) ◽  
pp. 012019
Author(s):  
N A M Yahya ◽  
M R Y Hamid ◽  
B H Ong ◽  
M A Mahdi ◽  
M H Yaacob

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5075
Author(s):  
Ondřej Podrazký ◽  
Jan Mrázek ◽  
Jana Proboštová ◽  
Soňa Vytykáčová ◽  
Ivan Kašík ◽  
...  

A practical demonstration of pH measurement in real biological samples with an in-house developed fiber-optic pH sensor system is presented. The sensor uses 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) fluorescent dye as the opto-chemical transducer. The dye is immobilized in a hybrid sol-gel matrix at the tip of a tapered optical fiber. We used 405 nm and 450 nm laser diodes for the dye excitation and a photomultiplier tube as a detector. The sensor was used for the measurement of pH in human aqueous humor samples during cataract surgery. Two groups of patients were tested, one underwent conventional phacoemulsification removal of the lens while the other was subjected to femtosecond laser assisted cataract surgery (FLACS). The precision of the measurement was ±0.04 pH units. The average pH of the aqueous humor of patients subjected to FLACS and those subjected to phacoemulsification were 7.24 ± 0.17 and 7.31 ± 0.20 respectively.


Sign in / Sign up

Export Citation Format

Share Document