catalyst dosage
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 50)

H-INDEX

10
(FIVE YEARS 3)

2022 ◽  
Vol 9 ◽  
Author(s):  
Shuai Zhang ◽  
Huixue Ren ◽  
Kaifang Fu ◽  
Wenqing Cheng ◽  
Daoji Wu ◽  
...  

The printing and dyeing wastewater produced by different dyes, as well as different printing and dyeing processes, have different components. These wastewater have high toxicity, high organic concentration, and deep chromaticity. Ozone catalytic oxidation is a very promising technical method for wastewater treatment. In this paper, Mn/Mg/Ce ternary catalyst was prepared, and the ozone catalytic oxidation treatment of actual and simulated printing and dyeing wastewater was performed to study the performance of four different carrier catalysts, namely, molecular sieve (MS), silica gel (SG), attapulgite (ATP), and nano alumina (Al2O3), by simulated dynamic test. The effects of reaction time, pH, and catalyst dosage on methyl orange degradation were studied. The results showed that under the optimum treatment conditions (120 min, pH 11, and 12.5 g/L catalyst dosage), the degradation rate of methyl orange reached 96% and the removal rate of the chemical oxygen demand of printing and dyeing wastewater reached 48.7%. This study shows that the treatment effect of ozone catalytic oxidation on printing and dyeing wastewater is remarkably improved after catalyst addition. This study provides a new choice of ozone catalyst for the degradation of printing and dyeing wastewaters in the future.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 206
Author(s):  
Yicheng Wang ◽  
Yingkun Wang ◽  
Xi Lu ◽  
Wenquan Sun ◽  
Yanhua Xu ◽  
...  

An Mn/Ce@red mud (RM) catalyst was prepared from RM via a doping–calcination method. Scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used to characterize the surface morphology, crystal morphology, and elemental composition of the Mn/Ce@RM catalyst, respectively. In addition, preparation and catalytic ozonation conditions were optimized, and the mechanism of catalytic ozonation was discussed. Lastly, a fuzzy analytic hierarchy process (FAHP) was adopted to evaluate the degradation of coal chemical biochemical tail water. The best preparation conditions for the Mn/Ce@RM catalyst were found to be as follows: (1) active component loading of 3%, (2) Mn/Ce doping ratio of 2:1, (3) calcination temperature of 550 °C, (4) calcination time of 240 min, and (5) fly ash floating bead doping of 10%. The chemical oxygen demand (COD) removal rate was 76.58% under this preparation condition. The characterization results suggested that the pore structure of the optimized Mn/Ce@RM catalyst was significantly improved. Mn and Ce were successfully loaded on the catalyst in the form of MnO2 and CeO2. The best operating conditions in the study were as follows: (1) reaction time of 80 min, (2) initial pH of 9, (3) ozone dosage of 2.0 g/h, (4) catalyst dosage of 62.5 g/L, and (5) COD removal rate of 84.96%. Mechanism analysis results showed that hydroxyl radicals (•OH) played a leading role in degrading organics in the biochemical tail water, and adsorption of RM and direct oxidation of ozone played a secondary role. FAHP was established on the basis of environmental impact, economic benefit, and energy consumption. Comprehensive evaluation by FAHP demonstrated that D3 (with an ozone dosage of 2.0 g/H, a catalyst dosage of 62.5 g/L, initial pH of 9, reaction time of 80 min, and a COD removal rate of 84.96%) was the best operating condition.


2022 ◽  
Vol 11 (1) ◽  
pp. 71-83
Author(s):  
Thanh H. V. Luong ◽  
Thao H. T. Nguyen ◽  
Binh V. Nguyen ◽  
Nghia K. Nguyen ◽  
Thanh Q. C. Nguyen ◽  
...  

Abstract In this study, the synthesized CuCo-zeolitic imidazolate framework (ZIF) catalyst was used to degrade methyl orange (MO) and methylene blue (MB) in water via a novel Fenton-like catalytic reaction. Effects of catalyst dosage, H2O2 concentration, initial concentration of the contaminants, and reaction time were evaluated. The results showed that MO and MB decomposition efficiencies were highly influenced by CuCo-ZIF concentration. The presence of H2O2 accelerated the degradation reaction of both MO and MB. Although it took 100 min to complete the removal of MB, it was 60 min for MO. At concentrations of MO and MB lower than 40 mg·L−1, the catalyst showed an almost complete degradation. The CuCo-ZIF catalyst presented a good recyclability with more than 90% removal of MO and MB after four times and five times reuse, respectively. These results demonstrated that MO and MB were efficiently degraded by a Fenton-like catalyst of CuCo-ZIFs and its potential in industrial wastewater treatment.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Weiwei Tang ◽  
Yue Yao ◽  
Xiaoqiao Huang

Titanium nanotubes were hydrothermally synthesized via a two-step method for ODS (oxidative desulfurization). The catalysts’ structures were characterized by XRD (X-ray diffraction), FT-IR, UV-Vis (UV-Vis diffuse reflectance spectra), NH3-TPD, etc. The effects of O/S molar ratio and catalyst dosage, etc., were systematically investigated. The catalyst exhibited remarkable performance, so that the removal of DBT (dibenzothiophene) was nearly 100% under the optimal conditions in 10 min. Also, the catalysts could be easily reused for six consecutive cycles. The hydrogen-assisted thermocatalytic mechanism over titanium nanotubes for ODS was also studied and an effective reactant concentration (ERC) number of 70.8 was calculated.


Author(s):  
C. Nirmala Rani

Abstract This study focusses on the photocatalytic degradation of caffeine (CAF) a stimulating drug and environmental contaminant that pose threat to humans and the environment. The effect of operating parameters such as; CAF initial concentration (5–20 mg/L), catalyst dosage (0.1–0.9 g/L) and pH (3.0–9.0) were explored in detail. The experimental results showed the maximum CAF and chemical oxygen demand (COD) removals of 87.2% and 66.7% respectively. The optimized parameters were; CAF initial concentration – 5 mg/L, catalyst dosage – 0.5 g/L and pH – 7.2. The photocatalytic degradation of CAF followed pseudo-first order kinetics. The obtained experimental data were analysed with response surface methodology (RSM) using Design Expert Software.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Malvin Moyo ◽  
Sekomeng Johannes Modise ◽  
Vusumzi Emmanuel Pakade

AbstractFreely suspended and porous basket restrained granules of palladium nanoparticles supported on polymer-grafted Macadamia nutshell biomass (Pd@Polym-MNS) composite were used for the treatment chromium(VI)-containing water. In the presence of formic acid, the Pd@Polym-MNS demonstrated its activity in the adsorption-reduction-based conversion of noxious chromium(VI) to less toxic chromium(III) with a low activation energy of 13.4 kJ mol–1, ΔH0 (+ 10.8 kJ mol–1), ΔS0 (−270.0 J mol–1 K–1), and ΔG0 (+ 91.3 to + 98.0 kJ mol–1) indicated the exothermic, endergonic and non-spontaneous nature of the catalytic redox reaction. In addition to facilitating easy recovery, rinsing, and reuse, restraining the Pd@Polym-MNS in the basket reactor helped maintain the integrity of the catalysts by preventing violent collisions of suspended granules with the mixing apparatus and the walls of the reaction vessel. Whereas the pseudo-first-order rate constant was recorded as 0.157 min–1 upon initial use, values of the mean and relative standard deviation for the second, third and fourth consecutive uses were found to be 0.219 min–1 and 1.3%, respectively. According to a response surface methodological approach to batch experimentation, the initial concentration of chromium(VI) and catalyst dosage had the greatest impact on the redox reaction rate, accounting for 85.7% and 11.6% of the variability in the value of the pseudo-first-order rate constant, respectively. Mutually beneficial effects of the combinations of high formic acid and low chromium(VI) concentration, high temperature and catalyst dosage as well as high formic acid and catalyst dosage were recorded.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4122
Author(s):  
Yasir Anwar ◽  
Hani S. H. Mohammed Ali ◽  
Waseeq Ur Rehman ◽  
Hassan A. Hemeg ◽  
Shahid Ali Khan

The development of a solid substrate for the support and stabilization of zero-valent metal nanoparticles (NPs) is the heart of the catalyst system. In the current embodiment, we have prepared solid support comprise of alginate-coated cellulose filter paper (Alg/FP) for the synthesis and stabilization of Co nanoparticles (NPs) named as Alg/FP@Co NPs. Furthermore, Alginate polymer was blended with 1 and 2 weight percent of CoNi NPs to make Alg-CoNi1/FP and Alg-CoNi2/FP, respectively. All these stabilizing matrixes were used as dip-catalyst for the degradation of azo dyes and reduction of 4-nitrophenol (4NP). The effect of initial dye concentration, amount of NaBH4, and catalyst dosage was assessed for the degradation of Congo red (CR) dye by using Alg-CoNi2/FP@Co NPs. Results indicated that the highest kapp value (3.63 × 10−1 min−1) was exhibited by Alg-CoNi2/FP@Co NPs and lowest by Alg/FP@Co NPs against the discoloration of CR dye. Furthermore, it was concluded that Alg-CoNi2/FP@Co NPs exhibited strong catalyst activity against CR, and methyl orange dye (MO) degradation as well as 4NP reduction. Antibacterial activity of the prepared composites was also investigated and the highest l activity was shown by Alg-CoNi2/FP@Co NPs, which inhibit 2.5 cm zone of bacteria compared to other catalysts.


2021 ◽  
Vol 12 (3) ◽  
pp. 289-298
Author(s):  
Muktar Musa Ibrahim ◽  
Hamza Rabiu Sani ◽  
Khuzaifa Muhammad Yahuza ◽  
Aminu Hassan Yusuf ◽  
Ahmad Bello Bungudu

Caffeine is a refractory pollutant of emerging concern that evades conventional waste-water treatment techniques. Here, we report the synthesis of visible light responsive perovskite structured LaMnO­3 photocatalyst using modified Pechini method and utilized it as an efficient photocatalyst for caffeine degradation. XRD, BET, UV-Vis, NH3-TPD, and SEM were used to characterize the photocatalyst. Response surface methodology using Central composite design was used to investigate the effect of three operational variables; catalyst dosage, initial caffeine concentration and pH on the caffeine photocatalytic degradation efficiency. The functional relationship between these operational variables and caffeine photocatalytic degradation efficiency was established be a second order polynomial model. The results of the response surface analysis indicate caffeine degradation efficiency is most significantly affected by catalyst dosage and pH. The optimal values of operational obtained by response surface optimization were found be 3.5 g/L for catalyst dosage, 7.9 and 44.6 mg/L for pH and initial caffeine concentration respectively given the caffeine degradation efficiency of 93.9%.


2021 ◽  
Vol 11 (1) ◽  
pp. 99-104
Author(s):  
Hoang Phan Huy ◽  
Cuong Thai Dinh

Cr-Cu/ZSM-5 zeolite catalysts were prepared by ion exchanged method and were characterized by XRD, SEM-EDS. The catalysts were applied to catalyze the transformation of corn-cob derived glucose into 5-hydroxymethyl furfural (HMF) under suitable reaction conditions. The effect of reaction conditions such as: catalyst dosage, temperature and reaction time on the yield of HMF product was investigated. The highest HMF yield of 32.6% was obtained when transformation carried out at suitable reaction conditions.


Sign in / Sign up

Export Citation Format

Share Document