extensive metabolism
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 16)

H-INDEX

16
(FIVE YEARS 3)

Toxics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 251
Author(s):  
Pascal Kintz ◽  
Laurie Gheddar ◽  
Camille Paradis ◽  
Mickael Chinellato ◽  
Alice Ameline ◽  
...  

A 43-year-old male, sport coach, presented him-self at the Emergency unit of a local hospital for epigastric pain, myalgia pain and severe headache. He claimed having used for some days a combination of GW1516 (cardarine), a peroxisome proliferator-activated receptor delta agonist (PPAR- δ) and MK2866 (ostarine), a selective androgen receptor modulator (SARM) to gain skeletal muscles. Cytolysis with marked increase of alanine aminotransferase or ALT (up to 922 UI/L) and aspartate aminotransferase or AST (up to 2558 UI/L) and massive rhabdomyolysis with elevated creatine phosphokinase or CPK (up to 86435 UI/L) were the main unusual biochemistry parameters. Using a specific liquid chromatography coupled to tandem mass spectrometry method, cardarine and ostarine tested positive in blood at 403 and 1 ng/mL, respectively. In urine, due to extensive metabolism, the parent GW1516 was not identified, while ostarine was at 88 ng/mL. Finally, both drugs were identified in hair (2 cm in length, brown in colour), at 146 and 1105 pg/mg for cardarine and ostarine, respectively. This clearly demonstrates repetitive abuse over the last 2 months. Asthenia was persistent for 2 weeks and 6 weeks after the admission, the subject fully recovered.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1094
Author(s):  
Laura Bertini ◽  
Flora Cozzolino ◽  
Silvia Proietti ◽  
Gaia Salvatore Falconieri ◽  
Ilaria Iacobucci ◽  
...  

Global warming is strongly affecting the maritime Antarctica climate and the consequent melting of perennial snow and ice covers resulted in increased colonization by plants. Colobanthus quitensis is a vascular plant highly adapted to the harsh environmental conditions of Antarctic Peninsula and understanding how the plant is responding to global warming is a new challenging target for modern cell physiology. To this aim, we performed differential proteomic analysis on C. quitensis plants grown in natural conditions compared to plants grown for one year inside open top chambers (OTCs) which determine an increase of about 4 °C at midday, mimicking the effect of global warming. A thorough analysis of the up- and downregulated proteins highlighted an extensive metabolism reprogramming leading to enhanced photoprotection and oxidative stress control as well as reduced content of cell wall components. Overall, OTCs growth seems to be advantageous for C. quitensis plants which could benefit from a better CO2 diffusion into the mesophyll and a reduced ROS-mediated photodamage.


2021 ◽  
Vol 22 ◽  
Author(s):  
Qiong Zhou ◽  
Bijun Xia ◽  
Taijun Yin ◽  
Yu He ◽  
Ling Ye ◽  
...  

Background: The interplay between phase II enzymes and efflux transporters leads to extensive metabolism and low systemic bioavailability of flavonoids. Objective: The study aims to investigate the dynamic interplay between multiple UGTs and multiple efflux transporters inside the cells. Methods: A new HeLa-UGT1A9-MRP3 cell was established to overexpress two dominant efflux transporters MRP3 and BCRP, and two UGT isoforms UGT1A9 and UGT1A3. The metabolism and glucuronides excretion for a model flavonoid genistein were determined in HeLa-UGT1A9-MRP3 cells and HeLa-UGT1A9-Con cells that overexpressed one UGT (1A9) and one efflux transporter (BCRP). Results: The excretion rate grew nearly 6-fold, cellular clearance of glucuronides increased about 3-fold, and a fraction of genistein metabolized (fmet) increased (14%, p<0.01) in the new cells. Small interfering (siRNA)-mediated MRP3 functional knockdown resulted in markedly decreases in the excretion rates (26%-78%), intracellular amounts (56%-93%), cellular clearance (54%-96%) in both cells, but the magnitude of the differences in HeLa-UGT1A9-Con cells were relatively small. Reductions in fmet values were similarly moderate (11%-14%). In contrast, UGT1A9 knockdown with siRNA caused large decreases in the excretion rates (46%-88%), intracellular amounts (80%-97%), cellular clearance (80%-98%) as well as fmet value (33%-43%, p<0.01) in both UGT1A9 cells. Comparisons of the kinetic parameters and profiles of genistein glucuronidation and UGT mRNA expression suggest that HeLa-UGT1A9-MRP3 has increased expression of both MRP3 and UGT1A3. Conclusion: The newly engineered HeLa-UGT1A9-MRP3 cells are an appropriate model to study the kinetic interplay between multiple UGTs and efflux transporters. It's a promising biosynthetic tool to obtain flavonoids glucuronides of high purity.


Author(s):  
Tania Chroumpi ◽  
Mao Peng ◽  
Lye Meng Markillie ◽  
Hugh D. Mitchell ◽  
Carrie D. Nicora ◽  
...  

The filamentous ascomycete Aspergillus niger has received increasing interest as a cell factory, being able to efficiently degrade plant cell wall polysaccharides as well as having an extensive metabolism to convert the released monosaccharides into value added compounds. The pentoses D-xylose and L-arabinose are the most abundant monosaccharides in plant biomass after the hexose D-glucose, being major constituents of xylan, pectin and xyloglucan. In this study, the influence of selected pentose catabolic pathway (PCP) deletion strains on growth on plant biomass and re-routing of sugar catabolism was addressed to gain a better understanding of the flexibility of this fungus in using plant biomass-derived monomers. The transcriptome, metabolome and proteome response of three PCP mutant strains, ΔlarAΔxyrAΔxyrB, ΔladAΔxdhAΔsdhA and ΔxkiA, grown on wheat bran (WB) and sugar beet pulp (SBP), was evaluated. Our results showed that despite the absolute impact of these PCP mutations on pure pentose sugars, they are not as critical for growth of A. niger on more complex biomass substrates, such as WB and SBP. However, significant phenotypic variation was observed between the two biomass substrates, but also between the different PCP mutants. This shows that the high sugar heterogeneity of these substrates in combination with the high complexity and adaptability of the fungal sugar metabolism allow for activation of alternative strategies to support growth.


2021 ◽  
Vol 28 ◽  
Author(s):  
Aline M. Hilzendeger Zilli ◽  
Eduardo M Zilli

: Flavonoids are commonly found in fruits, vegetables, and plant-derived foods and may promote various health benefits when included in the diet. The biological activity of flavonoids is normally associated to their potent antioxidant and anti-inflammatory effects, since oxidative stress is associated to conditions such as diabetes, obesity, cardiovascular and neurodegenerative diseases. Additionally, flavonoids may be related to metabolic diseases through their effects on inflammatory mediators and pathways, barrier integrity and gut microbiota composition. The extensive metabolism undergone by flavonoids in humans and the individual differences in their bioavailability to target organs hinder the interpretation of results from cell and animal models. Prospective human studies therefore provide an important perspective: In the field of neurodegenerative disease, carefully designed cohort studies have uncovered important associations between flavonoid intake and reduction in dementia risk, especially regarding specific flavonols, but also anthocyanins. Alternative mechanisms of action, such as changes in the gut microbiota or modulation of the production of toxic proteins, such as amyloid and tau, likely account for an important component of their positive effects, and their elucidation may lead to public health benefits of large magnitude.


Química Nova ◽  
2021 ◽  
Author(s):  
Mariana Mauro ◽  
Rodrigo Silva ◽  
Michel Campos ◽  
Anelize Bauermeister ◽  
Norberto Lopes ◽  
...  

Copalic (CA) and kaurenoic (KA) acids are the main diterpenes found in the oleoresin extracted from the copaiba tree (Copaifera sp). This study aimed to characterize the metabolism of CA and KA in rat and human liver microsomes using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The in vitro assays showed deviations from the Michaelian kinetics in the metabolism of CA and KA. Putative metabolites of CA and KA were characterized by LC-MS/MS using electrospray ionization (ESI) with time of flight (LC-ESI-TOF) and ion-trap (LC-ESI-IT) systems and identified as a CA isomer and 16,17-dihydroxy-kaurenoic acid, respectively. CA and KA are subject to extensive metabolism with each passage through the liver with extraction ratios (E) estimated as 0.97 and 0.99, respectively. In conclusion, the kinetic parameters and metabolites described here might support drug development and the traditional use.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Brendan Le Daré ◽  
Pierre-Jean Ferron ◽  
Pierre-Marie Allard ◽  
Bruno Clément ◽  
Isabelle Morel ◽  
...  

AbstractMetabolism is involved in both pharmacology and toxicology of most xenobiotics including drugs. Yet, visualization tools facilitating metabolism exploration are still underused, despite the availibility of pertinent bioinformatics solutions. Since molecular networking appears as a suitable tool to explore structurally related molecules, we aimed to investigate its interest in in vitro metabolism exploration. Quetiapine, a widely prescribed antipsychotic drug, undergoes well-described extensive metabolism, and is therefore an ideal candidate for such a proof of concept. Quetiapine was incubated in metabolically competent human liver cell models (HepaRG) for different times (0 h, 3 h, 8 h, 24 h) with or without cytochrom P450 (CYP) inhibitor (ketoconazole as CYP3A4/5 inhibitor and quinidine as CYP2D6 inhibitor), in order to study its metabolism kinetic and pathways. HepaRG culture supernatants were analyzed on an ultra-high performance liquid chromatography coupled with tandem mass spectrometry (LC-HRMS/MS). Molecular networking approach on LC-HRMS/MS data allowed to quickly visualize the quetiapine metabolism kinetics and determine the major metabolic pathways (CYP3A4/5 and/or CYP2D6) involved in metabolite formation. In addition, two unknown putative metabolites have been detected. In vitro metabolite findings were confirmed in blood sample from a patient treated with quetiapine. This is the first report using LC-HRMS/MS untargeted screening and molecular networking to explore in vitro drug metabolism. Our data provide new evidences of the interest of molecular networking in drug metabolism exploration and allow our in vitro model consistency assessment.


2020 ◽  
Vol 32 (2) ◽  
pp. 102-106 ◽  
Author(s):  
Quan Zhou ◽  
Zhiguang Zhang ◽  
Peiwu Geng ◽  
Bingge Huang ◽  
Xianqin Wang ◽  
...  

An ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed and validated for quantification of ligustroflavone, which was then applied in pharmacokinetics study in rat and tissue distribution in mouse. Twelve male Sprague Dawley rats were used for pharmacokinetics after intravenous (2 or 8 mg/kg) administration of ligustroflavone, six rats for each dose. Twenty-five mice were randomly divided into 5 groups (5 mice for each group, 1 group for each time point) and received 16 mg/kg ligustroflavone via intraperitoneal administration. The linear range of the calibration curve was over 2–2000 ng/mL for ligustroflavone in rat plasma and mouse tissues. The intra-day and inter-day precision expressed in % RSD were less than 14%, and the accuracy was between 88.5% and 108.4%. The tissue distribution results indicated that ligustroflavone diffuses rapidly and widely into major organs. The level of ligustroflavone was highest in the mouse liver, followed by the kidney, spleen, and lung. The overwhelming accumulation in the liver indicated that the liver was responsible for the extensive metabolism.


Synlett ◽  
2020 ◽  
Vol 31 (05) ◽  
pp. 517-520 ◽  
Author(s):  
Jakob Wallgren ◽  
Anders Rexander ◽  
Erik Vestling ◽  
Huiling Liu ◽  
Johan Dahlén ◽  
...  

Synthetic cannabinoids are a group of compounds that act on the CB1 receptor and are used illicitly as substitutes for cannabis. Given the rapid and extensive metabolism of synthetic cannabinoids, urinary biomarkers are essential if proof of drug intake is to be obtained in forensic laboratories. To identify good biomarker candidates, the metabolism of synthetic cannabinoids must be studied and reference standards need to be acquired. Studies on the metabolism of synthetic cannabinoids containing a terminally fluorinated pentyl side chain have shown that hydroxylation can occur at the four position of the side chain. This makes the 4-hydroxy-5-fluoropentyl side-chain metabolite a good urinary biomarker for proving intake of the corresponding parent drug, as this compound cannot be formed from its nonfluorinated analogue. Here, a concise synthetic route to the 4-hydroxy-5-fluoropentyl side-chain metabolites of the synthetic cannabinoids STS-135, MAM-2201, AM-2201, and XLR-11 is reported.


Sign in / Sign up

Export Citation Format

Share Document