fracture distribution
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 55)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 44 (4) ◽  
pp. 397-407
Author(s):  
Wenlong Ding ◽  
Weite Zeng ◽  
Ruyue Wang ◽  
Kai Jiu ◽  
Zhe Wang ◽  
...  

In this paper, a finite element-based fracture prediction method for shale reservoirs was proposed using geostress field simulations, uniaxial and triaxial compression deformation tests, and acoustic emission geostress tests. Given the characteristics of tensile and shear fractures mainly developed in organic-rich shales, Griffith and Coulomb – Mohr criteria were used to calculate shale reservoirs' tensile and shear fracture rates. Furthermore, the total fracture rate of shale reservoirs was calculated based on the ratio of tension and shear fractures to the total number of fractures. This method has been effectively applied in predicting fracture distribution in the Lower Silurian Longmaxi Formation shale reservoir in southeastern Chongqing, China. This method provides a new way for shale gas sweet spot optimization. The simulation results have a significant reference value for the design of shale gas horizontal wells and fracturing reconstruction programs.


Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 520
Author(s):  
Arezki Chabani ◽  
Ghislain Trullenque ◽  
Johanne Klee ◽  
Béatrice A. Ledésert

Scanlines constitute a robust method to better understand in 3D the fracture network variability in naturally fractured geothermal reservoirs. This study aims to characterize the spacing variability and the distribution of fracture patterns in a fracture granitic reservoir, and the impact of the major faults on fracture distribution and fluid circulation. The analogue target named the Noble Hills (NH) range is located in Death Valley (DV, USA). It is considered as an analogue of the geothermal reservoir presently exploited in the Upper Rhine Graben (Soultz-sous-Forêts, eastern of France). The methodology undertaken is based on the analyze of 10 scanlines located in the central part of the NH from fieldwork and virtual (photogrammetric models) data. Our main results reveal: (1) NE/SW, E/W, and NW/SE fracture sets are the most recorded orientations along the virtual scanlines; (2) spacing distribution within NH shows that the clustering depends on fracture orientation; and (3) a strong clustering of the fracture system was highlighted in the highly deformed zones and close to the Southern Death Valley fault zone (SDVFZ) and thrust faults. Furthermore, the fracture patterns were controlled by the structural heritage. Two major components should be considered in reservoir modeling: the deformation gradient and the proximity to the regional major faults.


Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 511
Author(s):  
Roger Hu ◽  
Stuart D. C. Walsh

The stability of open-pit brown-coal mines is affected by the manner in which water is transmitted or retained within their slopes. This in turn is a function of the in-situ fracture network at those mines. Fracture networks in real mines exhibit significant degrees of heterogeneity; encompassing a wide range of apertures, inter-fracture separations, and orientations. While each of these factors plays a role in determining fluid movement, over the scale of a mine it is often impractical to precisely measure, let alone simulate, the behaviour of each fracture. Accordingly, effective continuum models capable of representing the bulk effects of the fracture network are needed to understand the movement of fluid within these slopes. This article presents an analysis of the fracture distribution within the slopes of a brown coal mine and outlines a model to capture the effects on the bulk permeability. A stress-dependent effective-fracture-permeability model is introduced that captures the effects of the fracture apertures, spacing, and orientation. We discuss how this model captures the fracture heterogeneity and the effects of changing stress conditions on fluid flow. The fracture network data and the results from the effective permeability model demonstrate that in many cases slope permeability is dominated by highly permeable but low-probability fractures. These results highlight the need for models capable of capturing the effects of heterogeneity and uncertainty on the slope behaviour.


2021 ◽  
Author(s):  
Chenlin Wang ◽  
Xiaodong Zhang

Abstract A lot of gas resources remain in the abandoned gob. The overlying strata of the abandoned gob are the main places for gas storage and flow. The fracture distribution characteristics of the overlying strata have a significant impact on the gas migration. The mining similarity simulation test device of a plane stress was used to study the deformation and failure characteristics of overlying strata in an abandoned gob. The caved strata of the abandoned gob formed a trapezoidal distribution, and the caving range decreased gradually with an increase in distance from the coal seam. The strata collapsed in the caved zone, whereas the strata collapsed mainly on the bending subsidence in fractured zone. The subsidence curves of caved strata showed a lower concave shape, and the maximum subsidence existed in the middle of the abandoned gob. The caved strata subsidence decreased with an increase in distance from the coal seam. The horizontal fractures were dominant in the fractured zone. The abscission rate of the end mining position was greater than that of the start mining position. Large numbers of vertical fractures existed in the caved zone. The development degree of vertical fractures near the end mining position were larger than that of the start mining position, and the width of the gas-conducting fracture was more than three times that of the start mining position. The development degree, quantity and connectivity of the fracture in the end mining position were better than those in the start mining position.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 433
Author(s):  
Johanne Klee ◽  
Arezki Chabani ◽  
Béatrice A. Ledésert ◽  
Sébastien Potel ◽  
Ronan L. Hébert ◽  
...  

Fracture connectivity within fractured granitic basement geothermal reservoirs is an important factor controlling their permeability. This study aims to improve the understanding of fluid–rock interaction processes at low to moderate regional strain. The Noble Hills range (Death Valley, CA, USA) was chosen as a naturally exhumed paleo geothermal reservoir. A series of petrographic, petrophysical, and geochemical investigations, combined with a fracture distribution analysis, were carried out on samples collected across fracture zones. Our results indicate that several generations of fluids have percolated through the reservoir. An increase of (1) the alteration degree; (2) the porosity values; and (3) the calcite content was observed when approaching fracture zones. No correlation was identified among the alteration degree, the porosity, or the calcite content. At a local scale, samples showed that the degree of alteration does not necessarily depend on the fracture density or on the amount of the strain. It is concluded that the combined influence of strain and coeval fluid–rock interaction processes drastically influence the petrophysical properties of fracture zones, which in turn impact geothermal production potential.


2021 ◽  
Vol 861 (3) ◽  
pp. 032022
Author(s):  
R J Zhang ◽  
S K Hou ◽  
Y R Liu ◽  
W Y Zhuang ◽  
Kai Zhang ◽  
...  

2021 ◽  
Author(s):  
Bob Bamberg ◽  
Christoph von Hagke ◽  
Simon Virgo ◽  
Janos Urai

We analyse the effects of thickness on brittle boudinage in a metre-scale sample of marble containing a layer of amphibolite recording two phases of ductile pinch-and-swell followed by five generations of brittle boudinage. The amphibolite geometry was reconstructed in 3D, employing a method we call ‘outcrop-scale tomography’. Our data suggests that strain localisation depends on the ration of grain size and layer thickness of amphibolite. In very thin layers (few grains across), strain is diffuse throughout the entire layer, leading to macroscopically homogeneous stretching. Strain localisation increases when layer thickness is more than 10 grains, first through narrow tensile necks and shear zones (<10-20x average grain size), then through extension fractures, and finally shear fractures emerge. The disappearance of shear fractures in thinner layers can be explained by a geometry-related compressive stress decrease in the pinches and expected shear band width exceeding layer thickness. This results in localized shear evolving only in thicker layers. Successive reactivation between fracture generations, geometrical complexity, in the form of splays and branches, and the thickness-dependence of localised strain govern fracture distribution in the layer. We infer a second, temporal trend that records the progressive embrittlement of the rocks as they cool during exhumation, evidenced by a switch from shear to extensional fracturing. In the final stages, the marble is brittle enough to allow fracture propagation from the amphibolite across the material interface and the formation of throughgoing brittle faults.


Sign in / Sign up

Export Citation Format

Share Document