acid activated clay
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Aizat Aitugan ◽  
Sandugash Tanirbergenova ◽  
Yerbol Tileuberdi ◽  
Onuralp Yucel ◽  
Dildara Tugelbayeva ◽  
...  

2020 ◽  
Vol 27 (5) ◽  
pp. 280-287 ◽  
Author(s):  
Sun Dal Kim ◽  
Yong Han Lee
Keyword(s):  

Author(s):  
Dan Kica Omol ◽  
Ongwech Acaye ◽  
David Fred Okot ◽  
Ocident Bongomin

Plastics have become an essential part of modern life today. The global production of plastics has gone up to 299 million tonnes in 2013, which has increased enormously in the present years. The utilization of plastics and its final disposal pose tremendous negative significant impacts on the environment. The present study aimed to investigate the thermal and catalytic pyrolysis for the production of fuel oil from the polyethene plastic wastes. The samples collection for both plastic wastes and clay catalyst, sample preparation and pyrolysis experiment for oil production was done in Laroo Division, Gulu Municipality, Northern Uganda Region, Uganda. Catalysts used in the experiment were acid-activated clay mineral and aluminium chlorides on activated carbon. The clay mineral was activated by refluxing it with 6M Sulphuric acid for 3 hours. The experiment was conducted in three different phases: The first phase of the experiment was done without a catalyst (purely thermal pyrolysis). The second phase involves the use of acid-activated clay mineral. The third phase was done using aluminium chlorides on activated carbon. Both phases were done at different heating rates. In purely thermal pyrolysis, 88 mL of oil was obtained at a maximum temperature of 39ºC and heating rates of 12.55ºC /minute and reaction time of 4 hours. Acid activated clay mineral yielded 100 mL of oil with the heating rates of 12.55ºC/minute and reaction time of 3 hours 30 minutes. While aluminium chlorides on activated carbon produced 105 mL of oil at a maximum temperature of 400ºC and heating rates of 15.5ºC /minute and reaction time of 3 hours 10 minutes. From the experimental results, catalytic pyrolysis is more efficient than purely thermal pyrolysis and homogenous catalysis (aluminium chlorides) shows a better result than solid acid catalyst (activated clay minerals) hence saving the energy needed for pyrolysis and making the process more economically feasible.


Author(s):  
Dan Kica Omol ◽  
Ongwech Acaye ◽  
David Fred Okot ◽  
Ocident Bongomin

Plastics have become an indispensable part of modern life today. The global production of plastics has gone up to 299million tones in 2013, which is believed to be increasing in the near future. The utilization of plastics and its final disposal pose a tremendous negative significance impacts on the environment. The aim of this study was to investigate the thermal and catalytic pyrolysis for production of fuel oil from the polyethene plastic wastes. Catalysts used in the experiment were acid activated clay mineral and aluminum chlorides on activated carbon. The clay mineral was activated by refluxing it with 6M Sulphuric acid for 3hours. The experiment was conducted in three different phases: the first phase of the experiment was done without a catalyst where 88mL oil was obtained at a maximum temperature of 39 and heating rates of 12.5, reaction time of 4hours. The second phase involves the use of acid activated clay mineral where 100mL of oil was obtained and heating rates of 12.5 and reaction time of 3hours 30minutes. The third phase was done using aluminium chlorides on activated carbon and 105ml oil was obtained at a maximum temperature of 400 and heating rates of 15.5 reaction time of 3hours 10minutes. From the results, catalytic pyrolysis is more efficient than purely thermal pyrolysis and homogenous catalysis (aluminum chlorides) shows a better result than solid acid catalyst (activated clay minerals) hence saving the energy needed for pyrolysis and making the process more economically feasible.


Author(s):  
Dan Kica Omol ◽  
Ongwech Acaye ◽  
Fred David Okot ◽  
Ocident Bongomin

Plastics have become an indispensable part of modern life today. The global production of plastics has gone up to 299million tones in 2013, which is believed to be increasing in the near future. The utilization of plastics and its final disposal pose a tremendous negative significance impacts on the environment. The aim of this study was to investigate the thermal and catalytic pyrolysis for production of hydrocarbon fuel from the polyethene plastic wastes. Catalysts used in the experiment were acid activated clay mineral and aluminum chlorides on activated carbon. The clay mineral was activated by refluxing it with 6M Sulphuric acid for 3hours. The experiment was conducted in three different phases: the first phase of the experiment was done without a catalyst where 88mL oil was obtained at a maximum temperature of 39 and heating rates of 12.5, reaction time of 4hours. The second phase involves the use of acid activated clay mineral where 100mL of oil was obtained and heating rates of 12.5 and reaction time of 3hours 30minutes. The third phase was done using aluminum chlorides on activated carbon and 105ml oil was obtained at a maximum temperature of 400 and heating rates of 15.5 reaction time of 3hours 10minutes. From the results, catalytic pyrolysis is more efficient than purely thermal pyrolysis and homogenous catalysis (aluminum chlorides) shows a better result than solid acid catalyst (activated clay minerals) hence saving the energy needed for pyrolysis and making the process more economically feasible.


Catalytic efficiency of the heteropoly 11-tungsto-1-vanadophosphoric acid (HPV) supported on activated natural clay (HPVAC) towards condensation reaction of thiourea with 4-chlorobenzaldehyde to form (1E,3Z)-1,3-bis(4-chlorobenzylidene)thiourea. The purification of organic products from crude products using chromatographic techniques. The product is analysed the nature of the product with the aid of FT-IR, 1H-NMR and 13C-NMR. Further, to estimate the optimum reaction condition for the catalytic ability of the HPV supported on activated clay using condensation reaction of thiourea with 4-chlorobenzaldehyde.


2019 ◽  
Vol 9 (21) ◽  
pp. 4488
Author(s):  
Amri ◽  
Gómez ◽  
Balea ◽  
Merayo ◽  
Srasra ◽  
...  

Glycerol remains a bottleneck for the biodiesel industry as well as an opportunity from the biorefinery perspective, having a notable reactivity as a platform chemical. In particular, glycerol ketals can be envisaged as oxygenates for fuel formulation. In this study, we have focused on the green synthesis of glycerol ketals by reacting glycerol with acyclic (acetone, butanone) and cyclic (cyclohexanone) ketones in the presence of an acid activated clay Tunisian AC in homogeneous systems under quasi-solventless conditions. These reactions were followed by on-line Fourier Transform Infrared Spectroscopy (FTIR) (namely, ReactIR 10). Firstly, the contacting time was selected studying the activity, stability and chemical characteristics of a set of catalysts. The 1-h activated clay AC was further characterized by X-Ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electronic Microscopy with Energy Dispersive Spectroscopy (SEM/EDS). Finally, the effect of the main operational variables (catalyst concentration, reagents molar ratio, time and temperature) were checked and we reflected on adequate second-order kinetic models with partial first-order deactivation.


2019 ◽  
Vol 43 (2) ◽  
pp. 435-451 ◽  
Author(s):  
Wided HAGUI ◽  
Rym ESSID ◽  
Sondes AMRI ◽  
Nadia FERIS ◽  
Mohamed KHABBOUCHI ◽  
...  

2019 ◽  
Vol 13 ◽  
pp. 383-397 ◽  
Author(s):  
Victor Andres Arias España ◽  
Binoy Sarkar ◽  
Bhabananda Biswas ◽  
Ruhaida Rusmin ◽  
Ravi Naidu

Sign in / Sign up

Export Citation Format

Share Document