energy dissipation devices
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 38)

H-INDEX

16
(FIVE YEARS 4)

2022 ◽  
Vol 961 (1) ◽  
pp. 012071
Author(s):  
Mustafa Kareem Hamzah ◽  
Farzad Hejazi

Abstract Recently, the bridge unseating prevention devices are widely used in active seismic zones. These devices are stiffness dependant, velocity dependant and energy dissipation devices. The energy dissipation devices are designed to overcome the energy that transfers from bridge substructure to superstructure. However, the current devices are not controlled to function with different ground motion intensities and should be replaced after yielding. Therefore, this research introduced a slotted plate energy dissipation device with three parts, each part function in known deformation range. The slotted plate behavior has been evaluated numerically by finite element method. Displacement control and load control analysis has been done, and then the effect of steel grade is studied to predict the suitable steel properties for designing the plate. Moreover, the slotted plate behavior is applied in 3D bridge seismic analysis to assess the multi-level performance and the ability to overcome the seismic effect on the bridge in longitudinal direction. The results approved the capability of the plate to dissipate energy in multi-stage of deformation. The lower steel grade is suitable for low to moderate earthquake zone and the high grade can be used in severe ground motion areas. Furthermore, the bridge longitudinal behavior has enhanced with different steel grades of the slotted plate.


2021 ◽  
Vol 7 ◽  
Author(s):  
Naqeeb Ul Islam ◽  
R. S. Jangid

Passive energy dissipation devices or supplemental damping devices have been successfully implemented into structures for controlling the excessive vibrations under wind and seismic excitation. Recent developments in the form of negative stiffness dampers (NSDs) and inerter-based vibration absorbers (IVAs) as potential energy dissipation devices are of considerable interest to researchers. The present study evaluates the performance of the combined NSD and IVA as a possible alternative to the traditional energy dissipation devices such as viscous dampers (VDs) and viscoelastic dampers (VEDs). The mathematical formulation and optimal design of the combined NSD and IVA mechanism are presented. A 20-storey benchmark building is modeled as a multi-degree-of-freedom (MDOF) shear building. The dynamic equations for the MDOF building are written in the state-space form, and a simple optimization approach based on effective modal damping is prescribed. Comparative performance between traditionally applied and novel IVA and NSD is investigated. The design considerations to analyze structures employing combined NSDs and IVAs are developed. It is demonstrated that NSDs and IVA-based passive energy dissipation devices are the most efficient devices in reducing inter-storey drifts and floor accelerations compared with VDs and VEDs using the same damping coefficient.


2021 ◽  
pp. 875529302110575
Author(s):  
Chiyun Zhong ◽  
Constantin Christopoulos

This state-of-the-art review provides an overview of the evolution of self-centering structures from early historical structures that inherently exhibited a recentering response to modern systems engineered for enhanced seismic resilience. From the early research investigations that were conducted since the 1960s, to the sharp increase of interest in this topic over the last two decades, self-centering seismic-resistant structures that can mitigate both damage and residual drifts following major earthquakes have seen significant advances. These systems achieve the intended self-centering response by either allowing for the rocking of primary structural elements in a controlled manner, commonly coupled with mechanical restraints and energy dissipation devices, or by including self-centering devices as main structural or supplemental structural members. To better explain the concepts and the underlying mechanics governing their seismic response, detailed schematic illustrations were developed in this article, highlighting the fundamentals behind each of these systems. This article covers a historical overview, presents the state of the research and of the art, discusses general design challenges and practical considerations, and concludes with future research needs to advance the development and broader application of self-centering systems in real structures.


2021 ◽  
Author(s):  
Chi Zhang ◽  
Yanjie Hu ◽  
Ling Zhang ◽  
Xiangping Kong ◽  
Dongliang Nan ◽  
...  

2021 ◽  
Vol 1203 (3) ◽  
pp. 032045
Author(s):  
Chenhao Wu

Abstract Precast concrete frames (PCFs) with "dry" connections and self-centering capacity have been proposed as a new kind of seismic protective structural system with characteristics of damage controllable mechanism, easy-assemblage and rapid repair speed. The damage mechanism of PCFs are concentrated at the panel zones under earthquake excitations, so as to avoid damage to beam and column components. Through reasonable design for the PCFs, not only the structural and life safeties can be guaranteed, but also the seismic loss and social impact can be minimized. This paper conducts a comparative study between PCFs with "dry" connections and conventional cast-in-situ concrete frame. A generalized beam-column connection analytical model is utilized to predict the seismic behaviour of PCFs with energy dissipation devices, with an emphasis on the opening behaviour at beam-column interfaces, the self-centering capacity provided by prestressed tendons and the hysteresis behaviour provided by energy dissipation devices. Prototype PCFs or cast in situ frame structures are designed to achieve similar deformation capacities in Chinese highly seismic fortification zone. Probabilistic seismic capacity analyses (PSCA) are conducted based on the results of probabilistic pushover analyses and Latin Hypercube Sampling. Incremental dynamic analysis method combined with nonlinear time history analyses are utilized to conduct probabilistic seismic demand analyses (PSDA). Fragility functions of different structural systems are derived based on the convolution of PSCA and PSDA. Finally, the seismic risk is evaluated based on the fragility functions and the developed Chinese seismic code compliant hazard functions. The results indicate that PCFs with energy dissipation devices can have lower seismic risk than conventional cast-in-site frames.


2021 ◽  
pp. 136943322110139
Author(s):  
Jelena Ristic ◽  
Zoran Brujic ◽  
Danilo Ristic ◽  
Radomir Folic ◽  
Milos Boskovic

The results of the experimental research program realized on a bridge model constructed by using the seismically isolated system upgraded with space-bar devices (USI-SB) are presented in the paper. The installed adaptable system for seismic protection of bridges utilizes double spherical rolling seismic bearings (DSRSB) as seismic isolators, while the qualitative improvement of seismic performances is achieved through the use of novel adjustable multi-directional space-bar energy dissipation (SB-ED) devices. The experimental program consisted of quasi-static testing of isolation and energy dissipation devices under the cyclic loading and extensive shaking-table testing of a large-scale bridge model with installed USI-SB system. For both types of devices, a very stable all-directional response during cycling tests, as well as the favorable hysteretic behavior of the energy dissipation devices along the entire range of applied large displacements were registered. In the dynamic testing, the system showed high seismic response modification performances needed for the efficient protection, exhibiting its large potential in the qualitative improvement of seismic performances of isolated bridges.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Letícia Fleck Fadel Miguel ◽  
Guilherme Piva dos Santos

Road bridge designs are based on technical standards, which, to date, consider dynamic loading as equivalent static loads. Additionally, the few engineers who perform a dynamic analysis typically do not consider the effects of bridge-vehicle interaction and also simplify the road’s irregularity profile. Moreover, often, even when a simplified dynamic analysis is carried out and shows that there will be a high dynamic amplification factor (DAF), designers prefer to solve this problem by adopting high safety factors and thereby oversizing the bridge, rather than using energy dissipation devices that would allow reducing the amplitude of vibration. In this context, the present work proposes a complete methodology to minimize the dynamic response of road bridges by optimizing multiple tuned mass dampers (MTMD), taking into account the bridge-vehicle interaction, the random profile of pavement irregularities, and the uncertainties present in the coupled system and in the excitation. For illustrative purposes, the coupled vibration problem of a regular truck traveling on a random road profile over a typical Brazilian bridge is analyzed. Three different scenarios for the MTMD are considered. The proposed optimization problem is solved by employing the Whale Optimization Algorithm (WOA). The results showed the excellent ability of the proposed methodology, reducing the bridge’s DAF to acceptable values for all analyzed cases, considering or not the uncertainties present in the system. Furthermore, the results obtained by the proposed methodology are compared with results obtained using classical tuned mass damper (TMD) design methods, showing the best performance of the proposed optimization method. Thus, the proposed method can be employed to optimize MTMD, improving bridge design.


Sign in / Sign up

Export Citation Format

Share Document