Climate pattern in the Persian Gulf is of great interest due to the strategic geographical location of the gulf as a waterway of major oil transportation and its increasing regional economic importance. However, long term and continues climate observations in this region are rare, especially for high resolution data. High resolution wind pattern and climate conditions were measured at 3 heights on a 9 m tower on the shoreline north of Qatar (26.08 N, 51.36 E) from August 2015 to September 2016. In this work, the annual wind and climate patterns (wind velocity, temperature, relative humidity, and air pressure) are first presented. Drag coefficient, turbulent kinetic energy and sensible heat flux are calculated using the high speed measured data to explain the observed climate pattern. The results show the wind in the southern part of the gulf is dominant by a northwest stream with a diurnal average speed of 4.7 m/s. During the test year, the diurnal average temperature and relative humidity were 27°C and 70%, respectively. The drag coefficient is much higher for the wind from 270o-330o, corresponding to the wind coming mainly from northwest. The Turbulent Kinetic Energy (TKE) is strong during the daytime, especially around noon when the diurnal value is at its peak, and weak during the night. The result of this analysis may be used for better understanding of the local climate, allowing for further assessment of wind energy and pollution diffusion in the region.