acidic compounds
Recently Published Documents


TOTAL DOCUMENTS

316
(FIVE YEARS 37)

H-INDEX

33
(FIVE YEARS 2)

Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Sun Lee ◽  
Dong-Shin Kim ◽  
Yejin Son ◽  
Huong-Giang Le ◽  
Seung Wha Jo ◽  
...  

Salt is one of the most important factors for fermented foods, but the effect of salt treatment time on the quality of fermented foods has rarely been studied. In this study, the effect of different salt treatment times (0, 48, and 96 h) after the start of fermentation on the quality of the soy sauce moromi extract (SSME) was investigated. As the salt treatment time was delayed, the population of Aspergillus oryzae, Lactobacillaceae, and Enterococcaecea in SSME increased, whereas the population of Staphylococcaceae and Bacillaceae decreased, leading to changes in the enzymatic activity and metabolite profiles. In particular, the contents of amino acids, peptides, volatile compounds, acidic compounds, sugars, and secondary metabolites were significantly affected by the salt treatment time, resulting in changes in the sensory quality and appearance of SSME. The correlation data showed that metabolites, bacterial population, and sensory parameters had strong positive or negative correlations with each other. Moreover, based on metabolomics analysis, the salt treatment-time-related SSME metabolomic pathway was proposed. Although further studies are needed to elucidate the salt treatment mechanism in fermented foods, our data can be useful to better understand the effect of salt treatment time on the quality of fermented foods.


2021 ◽  
pp. 462748
Author(s):  
Joan Carles Nadal ◽  
Mónica Catalá-Icardo ◽  
Francesc Borrull ◽  
José Manuel Herrero-Martínez ◽  
Rosa Maria Marcé ◽  
...  

2021 ◽  
Vol 10 (9) ◽  
pp. e2610917783
Author(s):  
Laura Bonato Alves Oliveira ◽  
Yasmin Neves Vieira Sabino ◽  
Marlon do Valle Barroso ◽  
Ranaíla Kely Ferreira ◽  
Junior Fernandes Lima ◽  
...  

The aim of this study was to investigate the production of anti-Listeria bacteriocins by naturally occurring bacteria on silage and to characterize the most promising bacteriocin. The production of bacteriocins was evaluated by the spot-on-lawn method. The presence of interfering factors and the sensitivity to proteinase K were analyzed. The spectrum of activity was determined and the most promising bacteriocin-producing isolate was identified, being selected for the subsequent experiments. The antimicrobial peptide was extracted, analyzed regarding temperature and pH sensitivities, and purified. Of the 37 isolates evaluated, seven showed anti-Listeria activity. The presence of bacteriophages and production of acidic compounds were not detected. The selected antimicrobial compound was sensitive to proteinase K and the producing-bacterium was identified as Bacillus velezensis. The crude extract maintained the antimicrobial activity in different temperatures and pH conditions. In conclusion, the bacteriocin produced by Bacillus velezensis showed strong activity against Listeria monocytogenes, and great stability to elevated temperature and adverse pH, desirable features for future biotechnological applications.


Author(s):  
Widya Wijayanti

In this study, the effects of zeolite were observed to investigate the formation of a pyrolysis product, which is tar yield. Tar yields receive the most attention because of their potential as a bio-oil and chemical feedstocks. For this reason, efforts to increase tar yield were made, one of which was by adding zeolite to the pyrolysis process. The role of zeolite here was a pyrolysis catalyst. This research was conducted on a real pilot plant pyrolysis reactor which utilized mahogany wood as biomass feedstock with the addition of zeolite that was 0–50% of the total mass pyrolysis feedstock. The temperatures set in this pyrolysis were 250 °C, 500 °C, and 800 °C. The test results were measured in terms of the tar yield’s volume and mass. The chemical composition of tar yield was tested using a Gas Chromatograph Mass Spectrometry (GC-MS) to measure the percentage of its chemical constituent compounds. Then, the formation mechanism of tar compounds from pyrolysis was described by using HyperChem simulation. The results showed that an increase in zeolite catalyst percentage would generate more volume of tar yields. It was due to the breaking of biomass hydrocarbon chains, increasing the production of tar yields. Zeolite also affected the formation of hydrocarbon chains in tar yields where the chains became shorter as the percentage of zeolite catalyst rose. The mechanism of increasing tar product was due to the role of zeolite as a catalyst in the catalytic cracking process which is almost similar to acid-base reactions of Brønsted-Lowry and Lewis. This reaction took place when the pyrolysis yields moved through the pores of zeolite, breaking the long hydrocarbon chains into shorter ones which were dominated by alkenes, aromatic, and acidic compounds formation. In addition, acidic compounds represented by acetic acid function as a flammable matter possess the potential of becoming oil-fuel.


2021 ◽  
Vol 1236 ◽  
pp. 130340
Author(s):  
Xingjun Gao ◽  
Yuting Zhang ◽  
Qianqian Xie ◽  
Weiqiang Xu ◽  
Shouwen Jin ◽  
...  

Author(s):  
P. Sri Bala Jeya Krishna Sri ◽  
M. Praveen Kumar ◽  
S. Padmavathy

Turnera subulata are bright common garden flowers that are grown in Asian regions. Mostly flowers of several kinds have medicinal properties and applications. This is as one of a kind that contains compounds that has medicinal application. The present studies are targeted to investigate the phytochemical composition through GC-MS technique, antimicrobial activity and antitumor activity via MTT assay against Hep G2 (or HepG2), a human liver cancer cell line. Ethanol (EtOH) extracts has reasonable antitumor activity against Hep G2 for period of 24 h and 48 h and the aqueous part was non-reactive. From gas chromatography‑mass spectrometry (GC-MS), a sum of 27 identified natural compounds exhibiting against cancer cell. Some traces of flavouring agents and antifungal agent with very low GC-MS peak lengths are too observed furaneol (2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan-3-one), benzeneacetaldehyde, benzoic acid and undecanoic acid. Hence, the result that indicates the flavouring agents including flavonoids along with phenolic and other acidic compounds have important characteristic property in reducing and treating against cancer cells.


2021 ◽  
Author(s):  
Masayoshi Sakaino ◽  
Shunji Kato ◽  
Takashi Sano ◽  
Junyo Ito ◽  
Jun Imagi ◽  
...  
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1129
Author(s):  
Bo-Young Lee ◽  
Dae-Hyeon Lee ◽  
Keon-Soo Jang

Epoxy resins with acidic compounds feature adhesion, robustness, and deoxidizing ability. In this study, hybrid adhesive films with deoxidizing and curing capabilities for semiconductor packaging were fabricated. The compatibilizing effects and mechanical properties were chiefly investigated by using various additive binders (thermoplastic amorphous polymers) and compatibilizing agents. The curing, deoxidizing, thermal, and rheological properties were systematically investigated. For uniform film formation and maximizing deoxidizing curable abilities, a thermoplastic--thermoset mixture containing a phenyl and carboxylic acid-based additive (benzoic acid), and a polycarbonate was chosen as the model adhesive film. Without either a phenyl or an acidic group in the compatibilizing agent, deoxidizing and compatibilizing effects were not achieved. The manufactured hybrid adhesive film can be effectively used, especially for electronic devices that require deoxidization and adhesion.


2021 ◽  
Vol 13 (3) ◽  
pp. 1203
Author(s):  
Polina Mikhailova ◽  
Boris Burakov ◽  
Nikolai Eremin ◽  
Alexei Averin ◽  
Andrey Shiryaev

The paper consists of two main parts: a microscopic and spectroscopic investigation of the single crystal of 17-year-old 238Pu-doped Eu-monazite, and a theoretical calculation of the properties of several structural types of orthophosphates. It is shown that actinide-doped monazite is prone to the formation of mechanically weak, poorly crystalline crust, presumably consisting of rhabdophane. Its formation is likely promoted by the formation of peroxides and, potentially, acidic compounds, due to the radiolysis of atmospheric moisture. The calculations of mixing the enthalpies and Gibbs energies of binary solid solutions of Pu and rare earth element (REE) phosphates that were performed for the principal structural types—monazite, xenotime, rhabdophane—show that, in the case of light REEs, the plutonium admixture is preferentially redistributed into the rhabdophane. This process strongly affects the behavior of actinides, leached from a monazite-based waste form. The applications of these results for the development of actinide waste forms are discussed. The current data on the behavior of real actinide-doped monazite suggest that this type of ceramic waste form is not very resistant, even in relatively short time periods.


2021 ◽  
Author(s):  
Song Xiang ◽  
Panpan Lv ◽  
Changsheng Guo ◽  
Chunxuan Qi ◽  
Jun-Cheng Yang ◽  
...  

Novel chiral AIEgens bearing optically pure amino groups were synthesized and showed excellent discrimination for a series of chiral acidic compounds and amino acids. Interestingly, after supramolecular assembly with 4-sulfocalix[4]arene,...


Sign in / Sign up

Export Citation Format

Share Document