sliding dynamics
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 18)

H-INDEX

9
(FIVE YEARS 2)

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 79
Author(s):  
Jiaxin Wu ◽  
Fuchen Guo ◽  
Ke Li ◽  
Linxi Zhang

The sliding dynamics along two asymmetric/symmetric axial chains of ring chains linked by a linear chainis investigated using molecular dynamics (MD) simulations. A novel sub-diffusion behavior is observed for ring chains sliding along eithera fixed rod-like chain or fluctuating axial chain on asymmetric/symmetric axial chainsat the intermediate time range due to their strongly interplay between two ring chains. However, two ring chains slide in the normal diffusion at along time range because their sliding dynamics can be regarded as an overall motion of two ring chains. For ring chains sliding on two symmetric/asymmetricaxial chains, the diffusion coefficient D of ring chains relies on the bending energy of axial chains (Kb) as well as the distance of two axial chains (d). There exists a maximum diffusion coefficient Dmax at d = d* in which ring chains slide at the fastest velocity due to the maximum conformational entropy for the linking chain between two ring chainsat d = d*. Ring chain slide on fixed rod-like axial chainsfaster in the symmetric axial chain case than that in the asymmetric axial chain case. However, ring chains slide on fluctuatingaxial chainsslower in the symmetric axial chain case than that in the asymmetric axial chain case. This investigation can provide insights into the effects of the linked chain conformation on the sliding dynamics of ring chains in a slide-ring gel.


2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Biao Tang ◽  
Wuqiong Zhao

Considering the effectiveness of introducing the change rate of viral loads into the threshold setting policy for triggering interventions, we propose an immune-virus Filippov system with a nonlinear threshold. By developing new analytical and numerical methods, we systematically studied the rich dynamical behaviors and bifurcations of the proposed system, including the existence of three sliding segments and three pseudo-equilibria, boundary-center bifurcation, boundary-saddle bifurcation, pseudo-saddle-node bifurcation and tangency bifurcation. We further showed that the proposed system can exhibit virous structures in the coexistence of multiple steady states. Phenomena include bistability of two pseudo-equilibria, tristability and multiplestability of two pseudo-equilibria with regular equilibria or touching cycles. The modeling methods, as well as the analytical and numerical methods, can be widely applied to many other fields.


Polymer ◽  
2021 ◽  
pp. 124226
Author(s):  
Fuchen Guo ◽  
Ke Li ◽  
Jiaxin Wu ◽  
Yaxin Wang ◽  
Linxi Zhang
Keyword(s):  

2021 ◽  
pp. 027836492110272
Author(s):  
Yu She ◽  
Shaoxiong Wang ◽  
Siyuan Dong ◽  
Neha Sunil ◽  
Alberto Rodriguez ◽  
...  

Cables are complex, high-dimensional, and dynamic objects. Standard approaches to manipulate them often rely on conservative strategies that involve long series of very slow and incremental deformations, or various mechanical fixtures such as clamps, pins, or rings. We are interested in manipulating freely moving cables, in real time, with a pair of robotic grippers, and with no added mechanical constraints. The main contribution of this paper is a perception and control framework that moves in that direction, and uses real-time tactile feedback to accomplish the task of following a dangling cable. The approach relies on a vision-based tactile sensor, GelSight, that estimates the pose of the cable in the grip, and the friction forces during cable sliding. We achieve the behavior by combining two tactile-based controllers: (1) cable grip controller, where a PD controller combined with a leaky integrator regulates the gripping force to maintain the frictional sliding forces close to a suitable value; and (2) cable pose controller, where an linear–quadratic regulator controller based on a learned linear model of the cable sliding dynamics keeps the cable centered and aligned on the fingertips to prevent the cable from falling from the grip. This behavior is possible with the use of reactive gripper fitted with GelSight-based high-resolution tactile sensors. The robot can follow 1 m of cable in random configurations within two to three hand regrasps, adapting to cables of different materials and thicknesses. We demonstrate a robot grasping a headphone cable, sliding the fingers to the jack connector, and inserting it. To the best of the authors’ knowledge, this is the first implementation of real-time cable following without the aid of mechanical fixtures. Videos are available at http://gelsight.csail.mit.edu/cable/


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 91
Author(s):  
Koichi Mayumi ◽  
Chang Liu ◽  
Yusuke Yasuda ◽  
Kohzo Ito

Slide-ring (SR) gels cross-linked by ring molecules are characterized by softness (low Young’s modulus), elasticity (low hysteresis loss), and toughness (large fracture energy). In this article, the mechanical and fracture properties of SR gels are reviewed to clarify the physical understanding of the relationship between the molecular-level sliding dynamics of the slide-ring cross-links and macroscopic properties of SR gels. The low Young’s modulus and large fracture energy of SR gels are expressed by simple equations as a function of the degree of sliding movement. The dynamic fracture behaviors of SR gels gives us the time scale of the sliding dynamics of the cross-links, which is at the micro-sec scale. The fast sliding motion of the cross-links leads to the elasticity of the SR gels. The SR concept can be applied to solvent-free elastomers and composite materials.


2021 ◽  
Vol 31 (08) ◽  
pp. 2150119
Author(s):  
Wenjie Qin ◽  
Xuewen Tan ◽  
Xiaotao Shi ◽  
Marco Tosato ◽  
Xinzhi Liu

We propose a nonsmooth Filippov refuge ecosystem with a piecewise saturating response function and analyze its dynamics. We first investigate some key elements to our model which include the sliding segment, the sliding mode dynamics and the existence of equilibria which are classified into regular/virtual equilibrium, pseudo-equilibrium, boundary equilibrium and tangent point. In particular, we consider how the existence of the regular equilibrium and the pseudo-equilibrium are related. Then we study the stability of the standard periodic solution (limit cycle), the sliding periodic solutions (grazing or touching cycle) and the dynamics of the pseudo equilibrium, using quantitative analysis techniques related to nonsmooth Filippov systems. Furthermore, as the threshold value is varied, the model exhibits several complex bifurcations which are classified into equilibria, sliding mode, local sliding (boundary node and focus) and global bifurcations (grazing or touching). In conclusion, we discuss the importance of the refuge strategy in a biological setting.


2021 ◽  
Author(s):  
Yuxun Zhu ◽  
Lu Liu ◽  
Zhengdi Zhang

Abstract In this study, the Leslie-Gower model with functional response is extended into a non-smooth Filippov system by applying IPM strategies. Once the number of pests reaches or surpasses the given economic threshold(ET), spraying pesticides and releasing the natural enemy are implemented simultaneously. In order to maintain the pest population at or below ET, global dynamics of the proposed model are investigated completely, including the existence of sliding mode and various equilibria, sliding dynamics and global stability of equilibria. The result shows that real equilibrium cannot coexist with the unique pseudo-equilibrium. In particular, after excluding the existence of any possible limit cycle, the global stability of equilibria is obtained by employing qualitative and numerical techniques. In the end, the effect of our work on pest control are discussed.


2021 ◽  
Vol 156 ◽  
pp. 103784
Author(s):  
Chang Liu ◽  
Hideaki Yokoyama ◽  
Koichi Mayumi ◽  
Kohzo Ito

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qing Bao ◽  
Hengyi Kang

Droplet sliding naturally happens with practical significance in developing artificial self-cleaning surfaces or impermeable barriers. On water-repellent soil surfaces, such processes evolve at very small scales, typically at the particle level. To address this, this paper presents a two-dimensional Lattice Boltzmann (LB) study on the droplet sliding dynamics on a layer of regularly arranged particles with varying size and contact angle (CA) aimed at mimicking conditions comparable to those of real soils. The numerical droplet is initialized above the inclined granular surface with different lifting distances and deposited by gravity. The droplet hits the surface with different impacting velocities and subsequently slides down the slope. Four droplet-sliding behaviors were observed: a droplet sticks to the granular surface, a droplet moves by pinning and depinning of its interface (“stick-slip”), a droplet undergoes periodic elongation and shortening during sliding, and a droplet lifts off the granular surface and may be ruptured. For a droplet that displays the “stick-slip” behavior, the sliding velocity reaches a converged terminal velocity, which increases with a higher CA, a more inclined slope, and a smaller particle size. However, nonunique terminal velocities were identified to be affected by the impacting velocities, but their correlation is not continuous and may not be positive. Finally, we propose to quantify the rotational or translational movement by effective kinematic ratio (EKR), which is defined as the translational kinematic energy divided by the total kinematic energy. The unique relation between the EKR and the terminal velocity is suggested to be one practical indicator to intrinsically characterize the water repellency at the particle level.


2021 ◽  
Author(s):  
Vasily Riga ◽  
Turuntaev Sergey

<p>Seismicity associated with fluid injection into the subsurface is one of the most important issues worldwide. Fluid injection into or near a fault could lead to the fault sliding and to moderate or even hazardous seismic events. In the presented research, we study the single fault behavior under action of a single well injection near the fault. Various cases of initial conditions, system geometry, and friction properties of the fault are considered. To describe the friction on the fault we use two-parameter rate-and-state law. The fault has zones characterized by velocity-weakening and velocity-strengthening friction behavior. We analyze how location and size of the velocity-weakening zone and parameters of the friction law influence the fault sliding dynamics. We also consider how the fault sliding is changed when taking into account the rock poroelastic effects. As the result, we get conditions that are favorable for the occurrence of noticeable seismicity.</p>


Sign in / Sign up

Export Citation Format

Share Document