induced polarization effect
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 9)

H-INDEX

4
(FIVE YEARS 1)

2020 ◽  
Vol 10 (21) ◽  
pp. 7932
Author(s):  
Yuan Jiang ◽  
Yanju Ji ◽  
Yibing Yu ◽  
Shipeng Wang ◽  
Yuan Wang

For time domain transient electromagnetic measurement, the negative sign often appears in the polarization region, which contains the induced polarization information. It is considered that the polarization effect is caused by the capacitance charge of the earth. Extending the turn-off time of the emission current means increasing the charging time, and reducing the charging voltage, which makes the polarization effect easier to observe. Therefore, a double trapezoidal wave transmitting system with a controllable turn-off edge is designed in this paper. In the process of current transmitting, the turn-off time can be controlled by changing the clamping voltage depending on the passive clamping technology. By cutting into the absorption resistance, the current oscillation can be eliminated under the condition of ensuring linearity. To verify the effectiveness of the system, we designed a polarized wire loop based on the filament model simulating the polarized earth. Comparing the response of the wire loop, the emission current with short and long turn-off times contributes to inducing the induction and polarization fields respectively. The double trapezoidal wave transmitting system with a controllable turn-off edge is suitable for measuring the induced polarization effect.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. E111-E120 ◽  
Author(s):  
Nan-Nan Zhou ◽  
Lei Kangxin ◽  
Guoqiang Xue ◽  
Wen Chen

Transient electromagnetic (TEM) data can be seriously distorted by induced polarization (IP) phenomena when a polarizable body is present. The TEM field generated by a grounded-wire source contains transverse electric (TE) and transverse magnetic (TM) modes. The IP effect is most commonly studied with the TEM total field, rather than considering the difference between TE and TM fields. To investigate the effect of IP phenomena on the TE and TM fields, we have performed a detailed analysis on IP-distorted TEM data based on numerical and field examples. We first compare the IP effect on the TE and TM fields when polarizable bodies with different polarizable parameters are present. The TM field is more severely affected by the IP effect than the TE field. Compared to a single grounded-wire source, a double-line grounded-wire source can generate a larger TM field in the horizontal electric field. We compare the IP effect on TEM data from single- and double-line grounded-wire TEM configurations, and find that the data from the double-line configuration have a higher TM/TE ratio and are more severely affected by IP phenomena than in the single-line case. Thus, it would be easier to identify and extract the IP response from field data acquired with a double-line grounded-wire source configuration. These results have been verified by a field survey of the Kalatongke copper-nickel ore district, which has predominantly layered geology, in Xinjiang, China.


2020 ◽  
Author(s):  
M.G. Persova ◽  
Y.G. Soloveichik ◽  
D.V. Vagin ◽  
A.P. Sivenkova ◽  
E.I. Simon ◽  
...  

Author(s):  
Alberto Marsala ◽  
Michael S. Zhdanov ◽  
Vladimir Burtman ◽  
Leif Cox ◽  
David Sunwall ◽  
...  

Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. A59-A63 ◽  
Author(s):  
Hai Li ◽  
Guoqiang Xue ◽  
Yiming He

We have developed a scheme for decoupling the induced polarization (IP) effect from time-domain electromagnetic (TDEM) data. This scheme is achieved by simultaneously sampling the resistivity and pseudochargeability in a Bayesian framework. The TDEM and IP responses are simulated separately with the sampled model parameters and then are stacked to fit the IP-affected TDEM data. Thus, the influence of the IP phenomenon is eliminated in the process of recovering the resistivity. To reduce the computational cost brought by the Bayesian sampling, we use a 2D parametrization instead of sampling the full 3D space and we use a linear perturbation approximation for calculating the IP response. The linearized inversion results are used as the initial model, and a multiple proposed points algorithm is used to accelerate the sampling. We validate the proposed method with synthetic and field examples showing that it restores accurate estimates of electrical structures from the TDEM data that are significantly affected by the IP phenomenon. Our method could advance the application of the TDEM method to the scenario in which the IP may affect the TDEM data and mask the underlying geologic targets.


2016 ◽  
Vol 133 ◽  
pp. 16-24 ◽  
Author(s):  
Valeriya Yu. Hallbauer-Zadorozhnaya ◽  
Giovanni Santarato ◽  
Nasser Abu Zeid ◽  
Samuel Bignardi

Sign in / Sign up

Export Citation Format

Share Document