allowable bearing capacity
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 24)

H-INDEX

5
(FIVE YEARS 3)

2021 ◽  
Vol 54 (2F) ◽  
pp. 97-109
Author(s):  
Wael Noori Mrzah ◽  
Raid Aziz Mahmod ◽  
Amer Atia Lafta

The central regions of Babylon Governorate, located on the Shatt Al-Hilla, suffer from problems as the collapse and erosion of its banks, increase in sedimentation in the river, which reduces the river flow efficiency and forms meanders in the river. After the reconnaissance visit to determine the meandering sites. A detailed study of the area was carried out by drilling 6 test boreholes representing three areas (Ancient Babylon, Bata-Bridge, and Al-Khusrweya), two wells on both sides of the meander at a depth of 10m for each borehole to know soil properties, bearing capacity and consolidation, and its effect on the engineering construction. Soil samples have been taken to carry out geotechnical tests. also conducted a study of banks stability for three stations, where the cross-section was monitored by the M9 device and the height of the banks from both sides by the LEVEL device, using the Geo-Studio-2021 program with soil properties and by using Bishop method the safety factor was extracted for the three stations for erosion-prone areas. it was 3.44 in Ancient Babylon, Bata-Bridge was 1.7 and Al-Khusrweya was 1.6 Under natural conditions, the average river flow level reaches it in year respectively are 27.88, 27.74, 27.33 m, above sea level. Where all the stations were safe unless the water level increased or decreased. Also, the research reached a determination of the allowable bearing capacity reaches it before the landslide.


Author(s):  
I. A. Akinlabi

The use of the electrical resistivity method provides cost-effective subsurface information faster and allows reliable interpolation to be made between the tested points. It is therefore desirable to generate consistent data from resistivity measurements by using empirical relationships while only few zones of interest will require testing. This study, therefore, developed empirical relationships between electrical resistivity sounding and cone penetrometer test data for engineering site investigation using a case study from the Basement Complex Terrain of Southwestern Nigeria. Regression analysis was used to assess the correlation between the soil resistivity and cone resistance and the validity of the empirical relation was evaluated by comparing values estimated from the soil resistivity vs. cone resistance cross plot with field values obtained from cone penetration tests. The values of allowable bearing pressure computed by using both values in Meyerhof’s equation were also compared with the allowable bearing capacity deduced with laboratory values of soil strength parameters (cohesion, angle of internal friction, soil unit weight) in Terzaghi’s general formula. The results show close agreement between the measured and estimated values with the differences typically less than 10%. The standard errors of the estimates for the cone resistance and allowable bearing capacity are 2.70 and 4.16 respectively, implying reliability of the estimates. The proposed empirical relationships, therefore, appear to provide reasonable estimation of soil cone resistance and allowable bearing capacity from soil resistivity. Few complimentary cone penetrometer and laboratory tests will thus be required while the cost and duration of site investigation for engineering structures are expected to reduce.


2021 ◽  
Author(s):  
Hossein MolaAbasi ◽  
Aghileh Khajeh ◽  
REZA JAMSHIDI CHENARI ◽  
Meghdad Payan

Abstract Using a set of cone penetration test (CPT) records,the current paper develops a general framework based on regression analyses to model the load-settlement (q-s) behavior of shallow foundations resting on a variety of soils ranging from silty clays to sands.A three-parameter hyperbolic function is employed to rigorously examine the obtainedq-s curves, and to determine the model parameters.Also, the results of someCPT soundings, including the corrected cone tip resistance (qt) and the skin friction (Rf),are adopted to predict the results of plate load tests(PLT). The findingscorroborate the high accuracy of the proposed model, thereasonable performance of the hyperbolic function and the use of the Volterra series to predict the q-s curves.Moreover, the obtained curves from the newly developed model arecompared to those from other methods in the literature which cross-confirms the efficacyof the current model. Asensitivity analysis isalso conductedand the exclusive effects of all the contributing parameters are assessed among which Rfis shown to be the most influential. Ultimately, simple solutionsare adoptedto determine variouskey geotechnical parameters, like the ultimate bearing capacity (qult), the allowable bearing capacity (qa) andthe modulus of subgrade reaction (ks).


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
FALOWO OLUSOLA OLUMUYIWA

Geotechnical and geo-electrical investigations of Okitipupa has been carried out with the major objectives of establishing the subsoil/geology, evaluate the geotechnical properties and recommend appropriate foundation alternatives for building foundation construction. Seven borings were carried out with hand auger at two cone penetration test locations, and representative samples were collected and analyzed in the laboratory in accordance with relevant geotechnical engineering standards. In addition, six vertical electrical soundings (VES) were also conducted using Schlumberger configuration. The result of VES delineates three major geologic sequence comprising the topsoil/caprock, sand surficial aquifer, and sand intermediate aquifer. The topsoil has resistivity range of 242 – 1503 ohm-m and thickness of 3.4 - 20.9 m composed of clay sand and sand. This layer is capable of supporting shallow foundation such as simple spread, raft of reinforced concrete, with recommended allowable bearing pressure of 100 KN/m2 at depths of 1.0 m and 3.2 m in the northern and southern part of the study area respectively. The estimated settlement are less than 50 mm using foundation width of 0.6 m, but could be reduced by almost 50% if the width is greater than or equal to 2 m. The groundwater level is very deep (>10 m) and may not likely threatens the integrity of the foundation structures. The estimated allowable bearing capacity for strip footing (203 – 980 KN/m2), square footing (608 – 2940 KN/m2) within 1.4 m depth is appropriate. The capacity of driven (deep foundation) circular piles of diameters 400mm, 500mm, and 600mm, the recommended pile capacity varies at depth of 5 m (69 – 124 KN), 10 m (225 – 378 KN), and 15 m (470 – 766 KN), while that of bored circular pile ranges from (36 – 75 KN), 10 m (93 – 180 KN), and 15 m (170 – 317 KN).


Author(s):  
Riaz Bhanbhro ◽  
Zafar Ali Siyal ◽  
Bashir Ahmed Memon ◽  
Shahnawaz Zardari ◽  
Amjad Hussain Bhutto ◽  
...  

There is a growing need of construction around the globe. This need tends to provide newer opportunities for construction of buildings over reclaimed lands or earth filled areas. Mostly, the earth is filled with soils as it is an easily available material. Soil is a complex materials, and its properties can vary due to several reasons. If not understood properly, it can damage undisturbed samples collected from earth-filled soils. The basic properties of soils, the stress-strain behavior and strength parameters are presented and discussed. Results show that soil exhibits strain hardening and normally consolidated behavior in direct shear and oedometer test respectively. It is observed that the compression index values are in the range of 0.157 to 0.182 which indicates that the material is silty soils with low plasticity. The allowable bearing capacity in our study was 305 kPa and allowable load on footing was 987 kN. The strength parameters, i.e., friction angle and cohesion are 37 degree and 2 kPa respectively.


2020 ◽  
Vol 7 (2) ◽  
pp. 123
Author(s):  
Indra Mutiara

Gas Engine for Electrical Power Plant Project of Selayar is a power plant which will be built in Selayar Regency. This plant uses gas and biodiesel as a fuel. The facilities needed in the power plant construction includes a Gas Engine, Service Water Tank and Biosolar Tank. This study aims to obtain the allowable bearing capacity of the prestressed spun pile foundation for the three buildings based on soil investigation data of SPT (Standard Penetration Test) at BH-1 (gas engine), BH-2 (service water tank) and BH-3 (biosolar tank). The Meyerhof formula is used for the calculation of ultimate bearing capacity analysis on prestressed spun piles with various diameters for each depth. Calculation of the allowable bearing capacity (Qa) of the foundation at a depth of 19 meters, using a spun pile with a diameter of 300 cm, obtained a Qa value of 94.17 tons at BH-1, 94.20 tons at BH-2, and 74.65 tons at BH-3. Using a spun pile with a diameter of 400 cm, the Qa values were 116.71 tons on BH-1, 117.64 tons on BH-2, and 91.92 tons on BH-3. Using a spun pile with a diameter of 500 cm, the Qa values were 168.67 tons on BH-1, 172.09 tons on BH-2, and 131.49 tons on BH-3. Meanwhile, the values of Qa obtained were 229.85 tons on BH-1, 236.66 tons on BH-2, and 177.79 tons on BH-3 with the use of a spun pile with a diameter of 600 cm.


2020 ◽  
Vol 6 (11) ◽  
pp. 2120-2130
Author(s):  
Muhammad Usman Arshid ◽  
M. A. Kamal

Soil is remoulded, replaced, or improved in place to meet the required engineering properties. Relative compaction is the measure of the resulting engineering improvement. But design engineers need the allowable bearing capacity while the modulus of subgrade reaction is the primary input of modern foundation design software. The current research appraised a correlation between Relative Compaction ( ), Moisture Content ( ), and allowable bearing capacity ( ) and another correlation between , RC, MC, and modulus of subgrade reaction ( ). The test samples were extracted from each trial of the standard proctor test using purpose-built extraction tubes. Allowable bearing capacity has been determined by performing unconfined compression tests on the extracted tubes. The relationships have been established employing statistical analysis. It was noticed that soil samples at the lower moisture content (6-9%) show brittle failure before reaching the allowable strain. The soil samples having a moisture content of 10-14% exhibited shear failure, nearly simultaneous to the allowable strain. The soil samples having higher moisture content undergone a strain of 15% without showing the shear failure. A simple equation has also been appraised to determined Ks involving the three-input variable, i.e., , , and . Moderate correlations have been found to exist between the studied parameters, owing to some other variables' influence. Recommendations for future studies have been drawn to quantify the effect of identified parameters. Doi: 10.28991/cej-2020-03091606 Full Text: PDF


2020 ◽  
Vol 10 (21) ◽  
pp. 7625
Author(s):  
Muhammad Usman Arshid ◽  
M. A. Kamal

A regional geotechnical map was developed by employing kriging using spatial and s geostatistical analysis tools. Many studies have been carried out in the field of topography, digital elevation modeling, agriculture, geological, crop, and precipitation mapping. However, no significant contribution to the development of geotechnical mapping has been made. For the appraisal of a geotechnical map, extensive field explorations were carried out throughout the geotechnically diversified plateau spread over an area of approximately 23,000 km2. In total, 450 soil samples were collected from 75 data stations to determine requisite index properties and soil classification for the subsequent allowable bearing capacity evaluation. The formatted test results, along with associated geospatial information, were uploaded to ArcMap, which created an initial input electronic database. The kriging technique of geostatistical analysis was determined to be more feasible for generating a geotechnical map. The developed map represents the distribution of soil in the region as per the engineering classification system, allowable bearing capacity, and American Association of State Highway and Transportation Officials (AASHTO) subgrade rating for 1.5-, 3.0-, and 4.5-m depths. The accuracy of the maps generated using kriging interpolation technique under spatial analyst tools was verified by comparing the values in the generated surface with the actual values measured at randomly selected validation points. The database was primarily created for the appraisal of geotechnical maps and can also be used for preliminary geotechnical investigations, which saves the cost of soil investigations. In addition, this approach allows establishing useful correlations among the geotechnical properties of soil.


2020 ◽  
Vol 19 (2) ◽  
pp. 55-62
Author(s):  
Abul Hasnat ◽  
Safkat Tajwar Ahmed ◽  
Tahmid Mustafa ◽  
Md. Samiullah Chowdhury ◽  
S. M. Prince

The principal aim of the study is to improve the engineering properties of the soil sample using fly ash as a binding material. Bangladeshi fly ash was used in this study. Effects of fly ash on physical and mechanical properties of soil (Atterberg limits, moisture-density relationship, and unconfined compressive strength) are evaluated in the presence of 0%, 2%, 4%, 5%, 8%, 10%, 15%, 20% & 25% fly ash. For understanding the improvement of engineering properties of soil, a parametric analysis is conducted to determine the allowable bearing capacity, settlement and the time required for the consolidation. The allowable bearing capacity is evaluated using several equations for both saturated and unsaturated conditions. It is found that for 5% fly ash content, the maximum allowable bearing capacity is achieved. The maximum value of allowable bearing capacity is 660.12 kN/m2 in the unsaturated condition. The increment of maximum allowable bearing capacity is 77.74% for 5% fly ash content. The lowest value of the settlement was 336 mm (saturated) and 183 mm (unsaturated) for 25% fly ash content. Considering normally consolidated soil, it is found that the least time required for consolidation is 3.19 years for 25% fly ash content.


Sign in / Sign up

Export Citation Format

Share Document