additional hardening
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 12)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Haoran Li ◽  
Jiadong Wang ◽  
Juncheng Wang ◽  
Ming Hu ◽  
Yan Peng

In this study, we propose a novel cumulative-damage model based on continuum damage mechanics under situations where the mechanical components are subjected to variable loading. The equivalent completely reversed stress amplitude accounting for the effect of mean stress, stress gradients, loading history, and additional hardening behavior related to nonproportional loading paths on high-cycle fatigue under variable loading is elaborated. The effect of mean stress, stress gradients, loading history, and additional hardening behavior related to nonproportional loading paths is considered by averaging the superior limit of the intrinsic damage dissipation work in the critical domain. We developed a novel cumulative-damage model by introducing the equivalent completely reversed stress amplitude into the damage-evolution model. For better comparison, existing cumulative-damage models, including the Palmgren–Miner law, corrected Palmgren–Miner law, Morrow’s plastic work interaction rule, and Wang’s rule, were employed to predict the fatigue life under variable loading. The proposed model performed better, considering the error scatter band obtained by plotting the predicted and experimental fatigue life on the same coordinate system. The model precisely predicts fatigue life under variable loading and easily identifies its material constants.


Author(s):  
S.I. Karatushin ◽  
D.A. Khramova ◽  
N.A. Bildyuk

The paper introduces the results of studying the stress-strain state of the Novikov gearing in comparison with the involute gearing, similar in geometric parameters. In both versions, the wheel and gear are selected in size and gear ratio in accordance with the most common recommendations without additional hardening by chemical heat treatment. The zone of multiple contact of mated profiles is analyzed: changes in the geometry of contacts, pressure in the contact and stresses in various phases of gearing.


2021 ◽  
Vol 63 (10) ◽  
pp. 1572
Author(s):  
Т.С. Орлова ◽  
Д.И. Садыков ◽  
М.Ю. Мурашкин ◽  
В.У. Казыханов ◽  
Н.А. Еникеев

The effect of small additions of copper on the microstructure and physic-mechanical properties of an ultrafine-grained Al-1.47Cu-0.34Zr (wt%) alloy structured by high pressure torsion after preliminary annealing at 375 °C for 140 h has been studied. As a result of processing, high values of strength characteristics (conditional yield strength 430 MPa, ultimate tensile strength 574 MPa) with an acceptable level of electrical conductivity (46.1% IACS) and ductility (elongation to fracture ~ 5%) have been achieved. On the basis of the microstructural parameters determined by X-ray diffraction analysis and transmission electron microscopy, hardening mechanisms responsible for such high strength have been analyzed. It was shown that Cu plays the key role in strengthening. The addition of copper significantly contributes to grain refinement and, consequently, to grain-boundary hardening. Alloying with copper leads to significant additional hardening (~ 130 MPa) in the ultrafine-grained alloy, which is not typical for coarse-grained state. Segregation of Cu at grain boundaries and the formation of Cu nanoclusters are the most probable reasons for this hardening.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093533
Author(s):  
Li Bin ◽  
Liu Jianhui ◽  
Wang Xiuli

The established linear fatigue life prediction model based on the Miner rule has been widely applied to fatigue life prediction under constant amplitude uniaxial and multiaxial loading. Considering the physical significance of crack formation and propagation, a multiaxial equivalent linear fatigue life prediction model is put forward based on Miner rule and critical plane method under constant amplitude loading. The essence of this approach is that the equivalent strain, which consists of the shear strain and normal strain on the critical plane, replaces the relevant parameter of uniaxial nonlinear fatigue damage model. The principal axes of stress/strain rotate under non-proportional loading. Meanwhile, the microstructure of material and slip systems change, which lead to additional hardening effect. The ratio of cyclic yield stress to static yield stress is used to represent the cyclic hardening capacity of material, and the influence of phase difference and loading condition on the non-proportional hardening effect is considered. The multiaxial fatigue life is predicted using equivalent stain approach, maximum shear stain amplitude model, CXH model, and equivalent multiaxial liner model under proportional and/or non-proportional loading. The smooth and notched fatigue specimens of four kinds of materials (Q235B steel, titanium alloy TC4, Haynes 188, and Mod.9Cr-1Mo steel) are used in the multiaxial fatigue experiments to verify the proposed model. The predicted results of these materials are compared with the test results, and the results show that these four models can achieve good effect under proportional loading, but the proposed model performs better than the other three models under non-proportional loading. Meanwhile, it also verifies that the proposed enhancement factor can reflect the influence of phase difference and material properties on additional hardening.


Author(s):  
V. A. Gulevsky ◽  
S. N. Tsurikhin ◽  
S. V. Barabanov ◽  
Yu. V. Blinov ◽  
M. I. Popov

The possibility of additional hardening of foam aluminum by metal borides, hardening phases, which create an additional hardening frame in the matrix of cast aluminum, is shown. The increase in the strength of the aluminum frame and the entire composite material as a whole with the introduction of the boride component increases by 1.4 times.


2020 ◽  
pp. 65-74
Author(s):  
V. I. Kalita ◽  
◽  
A. A. Radyuk ◽  
D. I. Komlev ◽  
A. B. Mikhailova ◽  
...  

The microstructure and microhardness of eleven volumetric cermets based on TiC carbide with nickel and cobalt based matrices after liquid-phase sintering at a temperature of 1400 °C were studied. It is supposed to use the research results for the subsequent formation of a powder for plasma spraying of coatings. The compositions of the matrix, additional hardening phases, and carbon were selected taking into account the specific features of the formation of plasma coatings: a decrease in the carbon content and high solidification rates of the sprayed particles with the formation of additional nanosized carbides and an increase in the volume fraction of carbides from 70 % to 88 %. As the matrix, we used the traditional composition for cermets with TiC carbide, NiCr – Mo,  and industrial powders, PGSR brands, Ni – 13.5 Cr – 2.7 Si – 4.5 Fe – 0.37 C – 1.65 B, and TAFA 1241F Co – 32 Ni – 21 Cr – 8  Al – 0.5 Y. The ring zone on TiC carbide is formed with the participation of WC, Cr3C2, TiN, matrix phases and additional carbon in the composition of cermets, 1 – 2.8 %, as a result, the initial volume fraction of TiC carbide increases 70 to 88 %. Additional carbon is consumed to reduce oxygen content at the stage of sintering (reduction of oxides). After sintering, cermets have high microhardness values at a load on an indenter of 20 G, 1940 – 3210 kgf/mm2, and lower values at a load on an indenter of 200  G, which was explained by a scale factor. The maximum calculated contribution of the hardness of the hardening phases to the hardness of the cermet was established for cermets with a Co matrix of 3681 kgf/mm2.


2019 ◽  
Vol 42 (11) ◽  
pp. 2558-2578
Author(s):  
Bingfeng Zhao ◽  
Liyang Xie ◽  
Jiaxin Song ◽  
Zhiqiang Zhao ◽  
Fuyou Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document