Proceedings of the higher educational institutions ENERGY SECTOR PROBLEMS
Latest Publications


TOTAL DOCUMENTS

338
(FIVE YEARS 279)

H-INDEX

3
(FIVE YEARS 2)

Published By Kazan State Power Engineering University

1998-9903

Author(s):  
V. A. Novobritsky ◽  
D. S. Fedosov

THE PURPOSE. This paper considers the problem of relay protection functioning when the current transformer reaches the saturation mode which is provided by transient processes.METHODS. MATLAB Simulink software environment allows reproducing the method of statespace representation by using structural blocks. The model is verified by comparison the time to saturation, obtained by calculation and according to the graphical data of the model. The separation of variables method extracts and graphically displays the investigated components.RESULTS. This paper reveals that applying the requirements of IEC 61869-2:2012 standard, which determines the worst combination of series of unfavorable factors for current transformers in transient mode, can influence a serious impact on the correct operation of relay protection based on current, reactance or differential principle of action. Saturation of the current transformer can lead to both negative results: false operation of relay protection devices and their failure.CONCLUSION. According to the results of the study, it was determined that the presence of a DC component in the primary short-circuit current has the greatest effect on the protection operation. The delays in the restoration of the RMS value of the short-circuit current reached up to 0.3 seconds, which is comparable with the response time of the second protection zones for microprocessor-based relay protection devices. The DC component of the primary current and the presence of residual magnetic induction of the current transformer provides the largest content of the magnetization current, the largest angular error and also the largest content of the second harmonic component in the secondary short-circuit current.


Author(s):  
M. M. Sultanov

THE PURPOSE: The article presents the results of the development of a methodology for the design calculation of reliability and changes in the level of reliability of energy systems, taking into account the influence of control actions based on statistical methods of collection, analysis and models of experimental data processing.METHODS: The system analysis and generalization of experimental data on technological failures of the main equipment of thermal power plants were used in the calculation assessment.RESULTS: The objective function of controlling the reliability parameters of the thermal power plant power equipment is proposed. The approbation of the presented objective control function was performed, which showed the adequacy of the results obtained to assess the reliability of the main nodes and elements of the TPP power equipment.CONCLUSION: The results of the conducted studies show that when determining reliability indicators, it is necessary to take into account the actual technical condition of individual elements and resource-determining functional units of thermal power plant power equipment. The results obtained can be used to develop a methodology for evaluating control actions for calculating the output control parameters and a mathematical model for changing the output characteristics of TPP steam turbines in terms of heat and electric energy generation, as well as at the stage of developing design documentation for the creation of structural elements and practical recommendations in order to extend the service life of power equipment generating systems based on digital technologies.


Author(s):  
A. A. Lansberg ◽  
A. V. Vinogradov ◽  
A. V. Vinogradova

THE PURPOSE. Evaluation of the power transformer fleet 6-10/0,23-0,4 kV on the example of a branch of PJSC «Rosseti Center»-«Orelenergo».METHODS. In the work, based on the database of the branch of PJSC «Rosseti Center»-«Orelenergo», an analysis was made of the fleet of power transformers with a higher voltage of 6-10 kV in terms of their number, circuits and groups of connection of windings, rated power, terms of service, as well as energy efficiency classes, taking into account the current standards of the technical organization of PJSC «Rosseti».RESULTS. According to the results of the study, it was revealed that among the transformer fleet of the branch of PJSC «Rosseti Center»-«Orelenergo», the number of which is 6026 units, 4528 (73% of the total number) transformers have a circuit and a group of winding connections Y/Y0. The most numerous are transformers with rated capacities of 63 kVA, 100 kVA, 160 kVA, 250 kVA (respectively 853, 1454, 1252, 802 pieces of equipment). It was also revealed that only 268 transformers out of 6206, i.e. 4.3% of the total amount comply with the standard of PJSC «Rosseti» in terms of modern requirements for the level of energy efficiency class.CONCLUSION. A variant of the strategy for replacing power transformers in the branch of PJSC «Rosseti Center»-«Orelenergo» is proposed, within the framework of which trasformers with a given design, circuit and winding connection group, rated capacities and energy efficiency classes are replaced. The implementation of the strategy proposed in the work will make it possible to reduce total electricity losses by 2.3%, as well as increase the share of energy-efficient transformers from 4.3% to 20.4% in the branch of PJSC «Rosseti Center»-«Orelenergo».


Author(s):  
M. S. Ivanitskiy

THE PURPOSE. The necessity of establishing emission standards for highly toxic substances with carcinogenic properties in the context of the implementation of new principles of state regulation of environmental protection activities at energy enterprises is substantiated and confirmed. The analysis of the features of the formation and burnout of carcinogenic polycyclic aromatic hydrocarbons in the flue gases of boilers during the combustion of coals in lowtemperature conditions of the furnace process is carried out. Based on the analysis, the total and partial indicators of the harmfulness of flue gases were calculated in order to assess and predict the overall toxicity of coal combustion products, taking into account the contribution of carcinogenic substances.METHODS. When calculating the overall toxicity of flue gases, a systematic analysis and generalization of experimental data on the content of carcinogenic and non-carcinogenic polycyclic aromatic hydrocarbons in the combustion products of low-power boilers was applied.RESULTS. As a result of the performed study, the contribution of carcinogenic and non-carcinogenic polycyclic hydrocarbons to the overall toxicity of boiler flue gases during the combustion of Azeysky, Mugunsky, Cheremkhovsky and Tugnuy coal was determined. It is shown that substances such as benz(a)pyrene, fluoranthene, pyrene and phenanthrene significantly affect the level of the total indicator of the harmfulness of combustion products from 38.8 to 53.6%.CONCLUSION. The obtained research results can be applied at energy enterprises at the stage of substantiating the introduction of regime-technological and environmental measures in order to develop measures to improve environmental efficiency through technological rationing of carcinogenic emissions.


Author(s):  
I. A. Lukicheva ◽  
A. L. Kulikov

THE PURPOSE. Smart electrical grids involve extensive use of information infrastructure. Such an aggregate cyber-physical system can be subject to cyber attacks. One of the ways to counter cyberattacks is state estimation. State Estimation is used to identify the present power system operating state and eliminating metering errors and corrupted data. In particular, when a real measurement is replaced by a false one by a malefactor or a failure in the functioning of communication channels occurs, it is possible to detect false data and restore them. However, there is a class of cyberattacks, so-called False Data Injection Attack, aimed at distorting the results of the state estimation. The aim of the research was to develop a state estimation algorithm, which is able to work in the presence of cyber-attack with high accuracy.METHODS. The authors propose a Multi-Model Forecasting-Aided State Estimation method based on multi-model discrete tracking parameter estimation by the Kalman filter. The multimodal state estimator consisted of three single state estimators, which produced single estimates using different forecasting models. In this paper only linear forecasting models were considered, such as autoregression model, vector autoregression model and Holt’s exponen tial smoothing. When we obtained the multi-model estimate as the weighted sum of the single-model estimates. Cyberattack detection was implemented through innovative and residual analysis. The analysis of the proposed algorithm performance was carried out by simulation modeling using the example of a IEEE 30-bus system in Matlab.RESULTS. The paper describes an false data injection cyber attack and its specific impact on power system state estimation. A Multi - Model Forecasting-Aided State Estimation algorithm has been developed, which allows detecting cyber attacks and recovering corrupted data. Simulation of the algorithm has been carried out and its efficiency has been proved.CONCLUSION. The results showed the cyber attack detection rate of 100%. The Multi-Model Forecasting-Aided State Estimation is an protective measure against the impact of cyber attacks on power system.


Author(s):  
A. R. Safin ◽  
I. V. Ivshin ◽  
A. N. Tsvetkov ◽  
T. I. Petrov ◽  
V. R. Basenko ◽  
...  

THE PURPOSE. Charging infrastructure is one of the factors influencing the transition to electric vehicles, as the electric vehicles in operation are characterized by a small range and a long battery charge period. Today, the development of the charging infrastructure depends only on the networks of stationary charging stations, which also have disadvantages (high cost, lack of mobility, etc.). Therefore, the purpose of this work is to study the design features of mobile electric vehicle charge units (MCSEU) for the development of draft design documentation for the creation of a new MCSEU project. This issue includes the study of the world market of manufacturers of modern mobile chargers, the study of technical and operational features that are today presented to modern energy storage and storage systems.MATERIALS. The authors of the article processed and analyzed data on the current state of the charging infrastructure in Russia and the world, based on materials from Russian and foreign authors, as well as information on the development strategy of the electric transport industry in Russia and the world, in particular, data from Madison Gas and Electric.RESULTS. The obtained analytical results are one of the aspects that will be taken into account when developing mobile charging devices for electric vehicles. This mobile charger technology significantly expands the possibilities of using electric vehicles, in particular electric vehicles, and also solves various problems of the fuel and energy complex associated with autonomous power sources and distributed generation systems.CONCLUSION. The charging infrastructure is one of the factors influencing the transition to electric vehicles, as the electric vehicles in operation are characterized by a small range and a long period of charging the traction battery. However, this process will be long and in the near future networks of charging stations will be created, including mobile charging units for electric vehicles.


Author(s):  
K. V. Martynov ◽  
L. A. Panteleeva ◽  
D. A. Vasiliev ◽  
E. V. Dresvyannikova

THE PURPOSE. The asynchronous electric motor with a squirrel cage rotor is widely used in the electric driven industry and agricultural machinery. One of the possible ways to improve its energy characteristics is to use a combined 12-zone stator winding instead of the standard 6-zone one. However, in a combined winding with a parallel connection of the «star» and «delta» phases, the phases may not be loaded equally. Therefore, the main purpose of the work under analysis is to study the distribution of currents between the phases of the «star» and «delta» in the asynchronous motor with a combined winding.METHODS. The study was performed on the AIR71V4 engine, rewound onto a combined winding, in which the real ratio of the active resistances of the «delta» and «star» turned out to be 7% less than the theoretical one. The tests were carried out in no-load and short-circuit mode when powered from a three-phase network, as well as in short-circuit mode when one of the line wires is broken.RESULTS. The work gives the values of the currents flowing through the phases of the combined winding. For the experimental sample, the deviation of the obtained currents from the theoretical values is determined. Equations of currents are obtained when one of the linear wires is broken. Schemes for switching on the main contacts of a thermal relay for a motor with a combined winding are proposed.CONCLUSION. The results of the study showed that in an asynchronous motor with a combined winding, in which the real ratio of the active resistances of the «delta» and «star» is less than the theoretical one, the current is not proportionally distributed over the phases. The most preferred circuit for switching on a thermal relay is one in which its main contacts are connected to the «delta» phases, and the thermal relay must be three-pole.


Author(s):  
S. K. Sheryazov ◽  
S. S. Issenov ◽  
R. M. Iskakov ◽  
A. B. Kaidar

PURPOSE. Conduct a detailed analysis of existing wind turbines. Analyze the role, place and features of the functioning of wind power plants. Provide various options for generators and schemes for converting wind energy into electricity. Provide recommendations for improving the reliability of wind turbines in smart grids.METHODS. The article was prepared using analytical methods, statistical, theoretical, factorial and technical methods.RESULTS. A fixed speed asynchronous generator used in a wind power conversion system (WECS) without a power converter interface draws a significant portion of the reactive power from the grid. This configuration features simple, reliable operation. Wind turbine asynchronous generator with dual power supply. can improve overall power conversion efficiency by performing maximum power point tracking (MPPT), and an increase in speed of about 30% can improve dynamic performance and increase resilience to system disturbances that are not available for turbine types 1 and 2. The use of full-scale 100% power converters will significantly increase the productivity of SPEV wind energy conversion systems, but will slightly increase the cost of the power converter, up to 7% - 12% of the total equipment cost. By using a large number of pole pairs for all types of permanent magnet synchronous generator (PMG), the turbine gearbox can be removed. This type of wind energy conversion system is more resilient to grid disruptions compared to type 1, 2 and 3 wind systems. The review shows that types 3 and 4 technologies are used to most efficiently sell and recycle wind turbines in electricity markets.CONCLUSION. The article analyzes the features of the functioning of wind power plants operating on the grid. Various options for generators and schemes for converting wind energy into electricity are presented. A detailed analysis of existing wind turbines is provided. Recommendations are given for improving the reliability and efficiency of wind power plants in smart grids.


Author(s):  
A. E. Savenko ◽  
P. S. Savenko

THE PURPOSE. Consider the use of propeller electric installations as part of ship electrical complexes with a single electric power system. Highlight the rudder drives as a special type of electric propulsion of ships in northern latitudes. Investigate unified electric power systems with a propeller electric installation for the existence of power exchange oscillations in them. Propose methods and means for eliminating power oscillations in such systems.METHODS. To carry out the research, a single electric power system with electric rudder propellers of the world's only asymmetric icebreaker Baltika was considered. All the main elements of such system have been analyzed in detail. Experimental studies were carried out aimed at studying the operating modes of a unified electric power system.RESULTS. Experimental oscillograms of currents of parallel operating diesel-generator sets in different modes have been obtained. The existence of exchange and in-phase power oscillations during the operation of the unified electric power system of the icebreaker "Baltika" is noted. The data on the negative influence of power oscillations on the operation of the electrical complex of the icebreaker are presented.CONCLUSION. The use of ice-class sea vessels is an extremely important task for the Russian Federation. The installation of blocks that eliminate exchange and in-phase power oscillations will improve the reliability and efficiency of the use of marine vessels with electric rudder propellers when servicing hydrocarbon production on the Arctic shelf.


Author(s):  
D. Y. Davydov ◽  
S. G. Obukhov

THE PURPOSE. An urgent problem in the development of offshore wind energy is the high cost of generating electricity, which is due to large capital investments. The solution to this problem is possible by increasing efficiency while reducing costs as much as possible, which requires optimal design of offshore wind farms.GOAL. Development of model for the technical and economic indicators of offshore wind farms based on configuration data, taking into account the factors of climatic conditions and the topography of the seabed at the site of the planned wind farm location.METHODS. Mathematical modeling using Matlab software environment.RESULTS. The model evaluates the impact of wake and electrical losses in the main components of the electrical system on the operation of an offshore wind farm, and also allows to take into account the influence of the seabed relief on the economic characteristics of wind turbine foundations. The model was tested on the example of calculating two existing offshore wind farms «Horns Rev 1» and «Horn Rev 2» by comparing the calculated indicators of the average annual electricity generation, capacity factor, capital expenditures and normalized cost of electricity with the actual indicators obtained during their operation. The comparison results show slight deviations within 5% of the actual values.CONCLUSION. The model for assessing the technical and economic indicators of offshore wind farms was developed and tested on the basis of data on the wind farm configuration and layout, as well as factors of climatic conditions and terrain. Evaluation of the computational speed showed a sufficiently high efficiency of the algorithm, which allows the model to be applied to optimize large offshore wind farms.


Sign in / Sign up

Export Citation Format

Share Document