scholarly journals Primordial monopoles and strings, inflation, and gravity waves

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Joydeep Chakrabortty ◽  
George Lazarides ◽  
Rinku Maji ◽  
Qaisar Shafi

Abstract We consider magnetic monopoles and strings that appear in non-supersymmetric SO(10) and E6 grand unified models paying attention to gauge coupling unification and proton decay in a variety of symmetry breaking schemes. The dimensionless string tension parameter Gμ spans the range 10−6− 10−30, where G is Newton’s constant and μ is the string tension. We show how intermediate scale monopoles with mass ∼ 1013− 1014 GeV and flux ≲ 2.8 × 10−16 cm−2s−1sr−1, and cosmic strings with Gμ ∼ 10−11− 10−10 survive inflation and are present in the universe at an observable level. We estimate the gravity wave spectrum emitted from cosmic strings taking into account inflation driven by a Coleman-Weinberg potential. The tensor-to-scalar ratio r lies between 0.06 and 0.003 depending on the details of the inflationary scenario.

Author(s):  
Edmund J. Copeland ◽  
T. W. B. Kibble

Cosmic strings are predicted by many field-theory models, and may have been formed at a symmetry-breaking transition early in the history of the universe, such as that associated with grand unification. They could have important cosmological effects. Scenarios suggested by fundamental string theory or M-theory, in particular the popular idea of brane inflation, also strongly suggest the appearance of similar structures. Here we review the reasons for postulating the existence of cosmic strings or superstrings, the various possible ways in which they might be detected observationally and the special features that might discriminate between ordinary cosmic strings and superstrings.


2015 ◽  
Vol 93 (4) ◽  
pp. 445-448 ◽  
Author(s):  
Jesús Martín Romero ◽  
Mauricio Bellini

Using the formalism of Weitzenböck induced matter theory (WIMT) we calculate the gravito-magnetic charge on a topological string, which is induced through a foliation on a five-dimensional (5D) gravito-electromagnetic vacuum defined on a 5D Ricci-flat metric, which produces symmetry breaking on an axis. We obtain the resonant result that the quantized charges are induced on the effective four-dimensional hypersurface. This quantization describes the behavior of a test gravito-electric charge in the vicinity of a point gravito-magnetic monopole, both geometrically induced from a 5D vacuum. We demonstrate how gravito-magnetic monopoles would decrease exponentially during the inflationary expansion of the universe.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Anson Hook ◽  
Gustavo Marques-Tavares ◽  
Davide Racco

Abstract The low frequency part of the gravitational wave spectrum generated by local physics, such as a phase transition or parametric resonance, is largely fixed by causality, offering a clean window into the early Universe. In this work, this low frequency end of the spectrum is analyzed with an emphasis on a physical understanding, such as the suppressed production of gravitational waves due to the excitation of an over-damped harmonic oscillator and their enhancement due to being frozen out while outside the horizon. Due to the difference between sub-horizon and super-horizon physics, it is inevitable that there will be a distinct spectral feature that could allow for the direct measurement of the conformal Hubble rate at which the phase transition occurred. As an example, free-streaming particles (such as the gravity waves themselves) present during the phase transition affect the production of super-horizon modes. This leads to a steeper decrease in the spectrum at low frequencies as compared to the well-known causal k3 super-horizon scaling of stochastic gravity waves. If a sizable fraction of the energy density is in free-streaming particles, they even lead to the appearance of oscillatory features in the spectrum. If the universe was not radiation dominated when the waves were generated, a similar feature also occurs at the transition between sub-horizon to super-horizon causality. These features are used to show surprising consequences, such as the fact that a period of matter domination following the production of gravity waves actually increases their power spectrum at low frequencies.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Anish Ghoshal ◽  
Alberto Salvio

Abstract A totally asymptotically free QCD axion model, where all couplings flow to zero in the infinite energy limit, was recently formulated. A very interesting feature of this fundamental theory is the ability to predict some low-energy observables, like the masses of the extra fermions and scalars. Here we find and investigate a region of the parameter space where the Peccei-Quinn (PQ) symmetry is broken quantum mechanically through the Coleman-Weinberg mechanism. This results in an even more predictive framework: the axion sector features only two independent parameters (the PQ symmetry breaking scale and the QCD gauge coupling). In particular, we show that the PQ phase transition is strongly first order and can produce gravitational waves within the reach of future detectors. The predictivity of the model leads to a rigid dependence of the phase transition (like its duration and the nucleation temperature) and the gravitational wave spectrum on the PQ symmetry breaking scale and the QCD gauge coupling.


2021 ◽  
Vol 2021 (12) ◽  
pp. 006
Author(s):  
Wilfried Buchmüller ◽  
Valerie Domcke ◽  
Kai Schmitz

Abstract A metastable cosmic-string network is a generic consequence of many grand unified theories (GUTs) when combined with cosmic inflation. Metastable cosmic strings are not topologically stable, but decay on cosmic time scales due to pair production of GUT monopoles. This leads to a network consisting of metastable long strings on superhorizon scales as well as of string loops and segments on subhorizon scales. We compute for the first time the complete stochastic gravitational-wave background (SGWB) arising from all these network constituents, including several technical improvements to both the derivation of the loop and segment contributions. We find that the gravitational waves emitted by string loops provide the main contribution to the gravitational-wave spectrum in the relevant parameter space. The resulting spectrum is consistent with the tentative signal observed by the NANOGrav and Parkes pulsar timing collaborations for a string tension of G μ ∼ 10-11…-7 and has ample discovery space for ground- and space-based detectors. For GUT-scale string tensions, G μ ∼ 10-8…-7, metastable strings predict a SGWB in the LIGO-Virgo-KAGRA band that could be discovered in the near future.


2020 ◽  
Author(s):  
Deep Bhattacharjee

Gravity has been leaking in higher dimensions in the bulk. Gravity being a closed string is not attached or does not have any endpoints unlike photons to any Dirichlet (p)-Branes and therefore can travel inter-dimensional without any hindrance. In LHC, CERN, Gravitons are difficult to detect as they last for such a short span of time and in most of the cases invisible as because they can escape to higher spatial dimensions to the maximum of 10, as per 'M'-Theory. Gravity being one of the 4-Fundamental forces is weaker than all 3 (strong and weak nuclear force, electromagnetism) and therefore a famous problem has been made in particle physics called the 'hierarchy problem'. Through comprehensive analysis and research I have come to the conclusion that if dimension is 5 (or 4 if we neglect the temporal dimensions) then an old approach is there for the compactification of the dimensions as per Kaluza-Klein theory and the most important implications of this theory is that an unification of electromagnetism with gravitation occurs in the fifth dimensions, therefore we can conclude that both the charge (electric as well as magnetic and gravity) are dependent of each other in case of Dimensions greater than 4 (5 if time is added). Now, basic principles of electromagnetic theory states that the field-flux density through a closed surface like a T 2 Torus when integrated over the surface area leads to a zero flux. That means there is no flux outside this closed surface integral. However, if the surface is open then the field flux density is not zero and this preserves the concept of magnetic monopoles. However, in a paper in 1931,[1] Dirac approaches monopole theory of magnetism through a different perspectives that, if all the electrical charges of the universe is quantized[2] then there is a suitable (not yet proved though) existence of monopoles; however this are not well understood as of today's scenario. In condensed matter physics, plasma physics and magneto hydrodynamics, there are flux tubes and as the both ends of the flux tubes are independent of each other then the net flux through the cylinder is zero as the amount of field lines entering the tube on one side is equal to the amount of field lines exit from the other end. And in the sides of the cylinder or the flux tube there is no escape of field lines, hence, net flux is conserved. There also exists a type of 'Quasiparticles' that can act as a monopole.[3][4][5] Now, from the perspectives of the Guess law of electromagnetism, if there exists a magnetic monopole then the net charge or flux density over a surface is not zero rather the divergence of the flux density B is 4 [6]and an alternative approach of the 'monopole' can be achieved by increasing the spatial dimensions by a factor of 1 or more. The Gravity has no such poles and therefore can be considered as a unipolar flux density existing throughout the universe and is applicable to the inverse square law of decreasing magnitude via distance as 1/r 2. However, a magnet is always of bipolar with a north and South Pole. If a magnet can be broken then also the broken parts develop the other poles and become bipolar. However, there are tiny domains inside a magnet and if a magnet can be heated to approx. 700℃ then all the poles disappeared and if its cooled quickly, rather very quickly then the tiny domains inside the magnet would not get enough time to rearrange themselves and multipolar magnet is developed therefore to preserve the bipolar properties, the magnet should be cooled slowly allowing the time given to the tiny domains top rearrange themselves. Therefore, even multipole can be achieved quite easily but not the monopoles. So, the equation for a closed surface integral of a flux density without monopole is ∯(S) B dS = 0 or ∇ • B = 0 and that closed surface can be considered as 2 types namely (we will discuss about torus) as because in string theory compactification of higher spatial dimensions occurs in torus.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Paul Frederik Depta ◽  
Andreas Halsch ◽  
Janine Hütig ◽  
Sebastian Mendizabal ◽  
Owe Philipsen

Abstract Thermal leptogenesis, in the framework of the standard model with three additional heavy Majorana neutrinos, provides an attractive scenario to explain the observed baryon asymmetry in the universe. It is based on the out-of-equilibrium decay of Majorana neutrinos in a thermal bath of standard model particles, which in a fully quantum field theoretical formalism is obtained by solving Kadanoff-Baym equations. So far, the leading two-loop contributions from leptons and Higgs particles are included, but not yet gauge corrections. These enter at three-loop level but, in certain kinematical regimes, require a resummation to infinite loop order for a result to leading order in the gauge coupling. In this work, we apply such a resummation to the calculation of the lepton number density. The full result for the simplest “vanilla leptogenesis” scenario is by $$ \mathcal{O} $$ O (1) increased compared to that of quantum Boltzmann equations, and for the first time permits an estimate of all theoretical uncertainties. This step completes the quantum theory of leptogenesis and forms the basis for quantitative evaluations, as well as extensions to other scenarios.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 124
Author(s):  
Vadim Monakhov

We have developed a quantum field theory of spinors based on the algebra of canonical anticommutation relations (CAR algebra) of Grassmann densities in the momentum space. We have proven the existence of two spinor vacua. Operators C and T transform the normal vacuum into an alternative one, which leads to the breaking of the C and T symmetries. The CPT is the real structure operator; it preserves the normal vacuum. We have proven that, in the theory of the Dirac Sea, the formula for the charge conjugation operator must contain an additional generalized Dirac conjugation operator.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Maria Mehmood ◽  
Mansoor Ur Rehman ◽  
Qaisar Shafi

Abstract We explore proton decay in a class of realistic supersymmetric flipped SU(5) models supplemented by a U(1)R symmetry which plays an essential role in implementing hybrid inflation. Two distinct neutrino mass models, based on inverse seesaw and type I seesaw, are identified, with the latter arising from the breaking of U(1)R by nonrenormalizable superpotential terms. Depending on the neutrino mass model an appropriate set of intermediate scale color triplets from the Higgs superfields play a key role in proton decay channels that include p → (e+, μ+) π0, p → (e+, μ+) K0, p →$$ \overline{v}{\pi}^{+} $$ v ¯ π + , and p →$$ \overline{v}{K}^{+} $$ v ¯ K + . We identify regions of the parameter space that yield proton lifetime estimates which are testable at Hyper-Kamiokande and other next generation experiments. We discuss how gauge coupling unification in the presence of intermediate scale particles is realized, and a Z4 symmetry is utilized to show how such intermediate scales can arise in flipped SU(5). Finally, we compare our predictions for proton decay with previous work based on SU(5) and flipped SU(5).


Sign in / Sign up

Export Citation Format

Share Document