scholarly journals Méthodes fonctionnelles pour la transcendance en caractéristique finie

1994 ◽  
Vol 50 (2) ◽  
pp. 273-286 ◽  
Author(s):  
Laurent Denis

There are essentially two ways to obtain transcendence results in finite characteristic. The first, historically, is to use Ore's lemma and to prove that a series whose coefficients satisfy well-behaved divisibility properties cannot be a zero of an additive polynomial. This method is of the same kind as the method of p–automata. The second one is to try to imitate the usual methods in characteristic zero and to do transcendence theory with t–modules analogously to what we can do with algebraic groups. We want to show here that transcendence results over Fq(T) can also be obtained with the help of the variable T. If ec(z) is the Carlitz exponential function and e = ec(1), we obtain, in particular, that 1, e, …, e(p–2) (the P–2 first derivative of e with respect to T) are linearly independent over the algebraic closure of Fq(T). A corollary is that for every non-zero element α in Fq((1/T)), αpe and αec(e1/p) are transcendental over Fq(T). By changing the variable and using older results we also obtain the transcendence of ec(ω) for all ω ∈ Fq((1/T)) such that ω(T) and ω(Ti) are not zero and linearly dependent over Fq (Ti) (q > 2i + 1). Such u appear to be transcendental by the method of Mahler if i is not a power of p.

Author(s):  
Jan Stevens

AbstractWe discuss a problem of Arnold, whether every function is stably equivalent to one which is non-degenerate for its Newton diagram. We argue that the answer is negative. We describe a method to make functions non-degenerate after stabilisation and give examples of singularities where this method does not work. We conjecture that they are in fact stably degenerate, that is not stably equivalent to non-degenerate functions.We review the various non-degeneracy concepts in the literature. For finite characteristic, we conjecture that there are no wild vanishing cycles for non-degenerate singularities. This implies that the simplest example of singularities with finite Milnor number, $$x^p+x^q$$ x p + x q in characteristic p, is not stably equivalent to a non-degenerate function. We argue that irreducible plane curves with an arbitrary number of Puiseux pairs (in characteristic zero) are stably non-degenerate. As the stabilisation involves many variables, it becomes very difficult to determine the Newton diagram in general, but the form of the equations indicates that the defining functions are non-degenerate.


1966 ◽  
Vol 27 (2) ◽  
pp. 643-662 ◽  
Author(s):  
A. Fröhlich

A radical of a field K is a non zero element of a given algebraic closure some positive power of which lies in K. The group R(K) of radicals reflects properties of the field K and is in turn easily determined as an extension of the multiplicative group K* of non zero elements of K. The elements of the quotient group R(K)/K* are then conveniently identified with certain subspaces of the algebraic closure, the radical spaces of K (cf. §1). What we are here concerned with is the corresponding arithmetic situation, in which we start with a Dedekind domain o with quotient field K. The role of the radicals is taken over by the radical modules. These form a group (o) which contains the group of fractional ideals of o (cf. §4).


1955 ◽  
Vol 7 ◽  
pp. 169-187 ◽  
Author(s):  
S. A. Jennings

Introduction. In this paper we study the (discrete) group ring Γ of a finitely generated torsion free nilpotent group over a field of characteristic zero. We show that if Δ is the ideal of Γ spanned by all elements of the form G − 1, where G ∈ , thenand the only element belonging to Δw for all w is the zero element (cf. (4.3) below).


2015 ◽  
Vol 16 (1) ◽  
pp. 59-119 ◽  
Author(s):  
Lucia Di Vizio ◽  
Charlotte Hardouin ◽  
Michael Wibmer

We extend and apply the Galois theory of linear differential equations equipped with the action of an endomorphism. The Galois groups in this Galois theory are difference algebraic groups, and we use structure theorems for these groups to characterize the possible difference algebraic relations among solutions of linear differential equations. This yields tools to show that certain special functions are difference transcendent. One of our main results is a characterization of discrete integrability of linear differential equations with almost simple usual Galois group, based on a structure theorem for the Zariski dense difference algebraic subgroups of almost simple algebraic groups, which is a schematic version, in characteristic zero, of a result due to Z. Chatzidakis, E. Hrushovski, and Y. Peterzil.


2019 ◽  
Author(s):  
Jan Aldert Bergstra

The class of dual number meadows is introduced. By definition this class is a quasivariety. Dual number meadows contain a non-zero element the square of which is zero. These structures are non-involutive and coregular. Some properties of the equational theory of dual number meadows are discussed and an initial algebra specification is given for the minimal dual number meadow of characteristic zero which contains the dual rational numbers. Several open problems are stated.


2019 ◽  
Vol 22 (04) ◽  
pp. 1950025 ◽  
Author(s):  
Joel Nagloo ◽  
Alexey Ovchinnikov ◽  
Peter Thompson

We study the problem of characterizing polynomial vector fields that commute with a given polynomial vector field on a plane. It is a classical result that one can write down solution formulas for an ODE that corresponds to a planar vector field that possesses a linearly independent commuting vector field. This problem is also central to the question of linearizability of vector fields. Let [Formula: see text], where [Formula: see text] is a field of characteristic zero, and [Formula: see text] the derivation that corresponds to the differential equation [Formula: see text] in a standard way. Let also [Formula: see text] be the Hamiltonian polynomial for [Formula: see text], that is [Formula: see text]. It is known that the set of all polynomial derivations that commute with [Formula: see text] forms a [Formula: see text]-module [Formula: see text]. In this paper, we show that, for every such [Formula: see text], the module [Formula: see text] is of rank [Formula: see text] if and only if [Formula: see text]. For example, the classical elliptic equation [Formula: see text], where [Formula: see text], falls into this category.


2012 ◽  
Vol 2013 (682) ◽  
pp. 141-165
Author(s):  
Jean-Louis Colliot-Thélène ◽  
Alexei N. Skorobogatov

Abstract. Soit X une variété projective et lisse sur un corps k de caractéristique zéro. Le groupe de Brauer de X s'envoie dans les invariants, sous le groupe de Galois absolu de k, du groupe de Brauer de la même variété considérée sur une clôture algébrique de k. Nous montrons que le quotient est fini. Sous des hypothèses supplémentaires, par exemple sur un corps de nombres, nous donnons des estimations sur l'ordre de ce quotient. L'accouplement d'intersection entre les groupes de diviseurs et de 1-cycles modulo équivalence numérique joue ici un rôle important. For a smooth and projective variety X over a field k of characteristic zero we prove the finiteness of the cokernel of the natural map from the Brauer group of X to the Galois-invariant subgroup of the Brauer group of the same variety over an algebraic closure of k. Under further conditions, e.g., over a number field, we give estimates for the order of this cokernel. We emphasise the rôle played by the exponent of the discriminant groups of the intersection pairing between the groups of divisors and curves modulo numerical equivalence.


2018 ◽  
Vol 6 ◽  
Author(s):  
ANANTH N. SHANKAR ◽  
JACOB TSIMERMAN

We present a heuristic argument based on Honda–Tate theory against many conjectures in ‘unlikely intersections’ over the algebraic closure of a finite field; notably, we conjecture that every abelian variety of dimension 4 is isogenous to a Jacobian. Using methods of additive combinatorics, we answer a related question of Chai and Oort where the ambient Shimura variety is a power of the modular curve.


Sign in / Sign up

Export Citation Format

Share Document