scholarly journals Optically reversible electrical soft-breakdown in wide-bandgap oxides—A factorial study

2018 ◽  
Vol 123 (16) ◽  
pp. 161555 ◽  
Author(s):  
Y. Zhou ◽  
D. S. Ang ◽  
P. S. Kalaga
Keyword(s):  
Author(s):  
F. A. Ponce ◽  
R. L. Thornton ◽  
G. B. Anderson

The InGaAlP quaternary system allows the production of semiconductor lasers emitting light in the visible range of the spectrum. Recent advances in the visible semiconductor diode laser art have established the viability of diode structures with emission wavelengths comparable to the He-Ne gas laser. There has been much interest in the growth of wide bandgap quaternary thin films on GaAs, a substrate most commonly used in optoelectronic applications. There is particular interest in compositions which are lattice matched to GaAs, thus avoiding misfit dislocations which can be detrimental to the lifetime of these materials. As observed in Figure 1, the (AlxGa1-x)0.5In0.5P system has a very close lattice match to GaAs and is favored for these applications.In this work, we have studied the effect of silicon diffusion in GaAs/InGaAlP structures. Silicon diffusion in III-V semiconductor alloys has been found to have an disordering effect which is associated with removal of fine structures introduced during growth. Due to the variety of species available for interdiffusion, the disordering effect of silicon can have severe consequences on the lattice match at GaAs/InGaAlP interfaces.


2002 ◽  
Vol 716 ◽  
Author(s):  
Yi-Mu Lee ◽  
Yider Wu ◽  
Joon Goo Hong ◽  
Gerald Lucovsky

AbstractConstant current stress (CCS) has been used to investigate the Stress-Induced Leakage Current (SILC) to clarify the influence of boron penetration and nitrogen incorporation on the breakdown of p-channel devices with sub-2.0 nm Oxide/Nitride (O/N) and oxynitride dielectrics prepared by remote plasma enhanced CVD (RPECVD). Degradation of MOSFET characteristics correlated with soft breakdown (SBD) and hard breakdown (HBD), and attributed to the increased gate leakage current are studied. Gate voltages were gradually decreased during SBD, and a continuous increase in SILC at low gate voltages between each stress interval, is shown to be due to the generation of positive traps which are enhanced by boron penetration. Compared to thermal oxides, stacked O/N and oxynitride dielectrics with interface nitridation show reduced SILC due to the suppression of boron penetration and associated positive trap generation. Devices stressed under substrate injection show harder breakdown and more severe degradation, implying a greater amount of the stress-induced defects at SiO2/substrate interface. Stacked O/N and oxynitride devices also show less degradation in electrical performance compared to thermal oxide devices due to an improved Si/SiO2 interface, and reduced gate-to-drain overlap region.


2019 ◽  
Author(s):  
Ulrich W. Paetzold ◽  
Saba Gharibzadeh ◽  
Marius Jackoby ◽  
Tobias Abzieher ◽  
Somayeh Moghadamzadeh ◽  
...  

2019 ◽  
Author(s):  
Yuliar Firdaus ◽  
Thomas D. Anthopoulos ◽  
Yuanbao Lin ◽  
Ferry Anggoro Ardy Nugroho ◽  
Emre Yengel ◽  
...  

Author(s):  
Cheng-Piao Lin ◽  
Chin-Hsin Tang ◽  
Cheng-Hsu Wu ◽  
Cheng-Chun Ting

Abstract This paper analyzes several SRAM failures using nano-probing technique. Three SRAM single bit failures with different kinds of Gox breakdown defects analyzed are gross function single bit failure, data retention single bit failure, and special data retention single bit failure. The electrical characteristics of discrete 6T-SRAM cells with soft breakdown are discussed and correlated to evidences obtained from physical analysis. The paper also verifies many previously published simulation data. It utilizes a 6T-SRAM vehicle consisting of a large number of SRAM cells fabricated by deep sub-micron, dual gate, and copper metallization processes. The data obtained from this paper indicates that Gox breakdown location within NMOS pull-down device has larger a impact on SRAM stability than magnitude of gate leakage current, which agrees with previously published simulation data.


Author(s):  
Sheng-Chieh Lin ◽  
Yu-Chieh Cheng ◽  
Man-Kit Leung ◽  
Jiun-Haw Lee ◽  
Tien-Lung Chiu

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 637
Author(s):  
Hongliang Li ◽  
Zewen Lin ◽  
Yanqing Guo ◽  
Jie Song ◽  
Rui Huang ◽  
...  

The influence of N incorporation on the optical properties of Si-rich a-SiCx films deposited by very high-frequency plasma-enhanced chemical vapor deposition (VHF PECVD) was investigated. The increase in N content in the films was found to cause a remarkable enhancement in photoluminescence (PL). Relative to the sample without N incorporation, the sample incorporated with 33% N showed a 22-fold improvement in PL. As the N content increased, the PL band gradually blueshifted from the near-infrared to the blue region, and the optical bandgap increased from 2.3 eV to 5.0 eV. The enhancement of PL was suggested mainly from the effective passivation of N to the nonradiative recombination centers in the samples. Given the strong PL and wide bandgap of the N incorporated samples, they were used to further design an anti-counterfeiting label.


Sign in / Sign up

Export Citation Format

Share Document