scholarly journals Cohomology bounds for sheaves of dimension one

2014 ◽  
Vol 25 (11) ◽  
pp. 1450103 ◽  
Author(s):  
Jinwon Choi ◽  
Kiryong Chung

We find sharp bounds on h0(F) for one-dimensional semistable sheaves F on a projective variety X. When X is the projective plane ℙ2, we study the stratification of the moduli space by the spectrum of sheaves. We show that the deepest stratum is isomorphic to a closed subset of a relative Hilbert scheme. This provides an example of a family of semistable sheaves having the biggest dimensional global section space.

Author(s):  
Naoki Koseki

Abstract Let $f \colon X \to Y$ be the blow-up of a smooth projective variety $Y$ along its codimension two smooth closed subvariety. In this paper, we show that the moduli space of stable sheaves on $X$ and $Y$ are connected by a sequence of flip-like diagrams. The result is a higher dimensional generalization of the result of Nakajima and Yoshioka, which is the case of $\dim Y=2$. As an application of our general result, we study the birational geometry of the Hilbert scheme of two points.


2018 ◽  
Vol 2020 (23) ◽  
pp. 9011-9074 ◽  
Author(s):  
Omegar Calvo-Andrade ◽  
Maurício Corrêa ◽  
Marcos Jardim

Abstract We study codimension one holomorphic distributions on the projective three-space, analyzing the properties of their singular schemes and tangent sheaves. In particular, we provide a classification of codimension one distributions of degree at most 2 with locally free tangent sheaves and show that codimension one distributions of arbitrary degree with only isolated singularities have stable tangent sheaves. Furthermore, we describe the moduli space of distributions in terms of Grothendieck’s Quot-scheme for the tangent bundle. In certain cases, we show that the moduli space of codimension one distributions on the projective space is an irreducible, nonsingular quasi-projective variety. Finally, we prove that every rational foliation and certain logarithmic foliations have stable tangent sheaves.


2017 ◽  
Vol 60 (3) ◽  
pp. 522-535 ◽  
Author(s):  
Oleksandr Iena ◽  
Alain Leytem

AbstractIn the Simpson moduli space M of semi-stable sheaves with Hilbert polynomial dm − 1 on a projective plane we study the closed subvariety M' of sheaves that are not locally free on their support. We show that for d ≥4 , it is a singular subvariety of codimension 2 in M. The blow up of M along M' is interpreted as a (partial) modification of M \ M' by line bundles (on support).


2001 ◽  
Vol 73 (4) ◽  
pp. 475-482 ◽  
Author(s):  
MARCIO G. SOARES

We consider the question of relating extrinsic geometric characters of a smooth irreducible complex projective variety, which is invariant by a one-dimensional holomorphic foliation on a complex projective space, to geometric objects associated to the foliation.


2018 ◽  
Vol 11 (4) ◽  
pp. 1046-1057
Author(s):  
Amran Dalloul

In this paper, we study the varieties V ⊆ C 4 p of dimension one that contain points of the form (x1, x2, exp(x1), exp(x2)) by using tools from Non-Archimedian Analysis.


1980 ◽  
Vol 32 (3) ◽  
pp. 628-630 ◽  
Author(s):  
Aiden A. Bruen

In what follows, a theorem on blocking sets is generalized to higher dimensions. The result is then used to study maximal partial spreads of odd-dimensional projective spaces.Notation. The number of elements in a set X is denoted by |X|. Those elements in a set A which are not in the set Bare denoted by A — B. In a projective space Σ = PG(n, q) of dimension n over the field GF(q) of order q, ┌d(Ωd, Λd, etc.) will mean a subspace of dimension d. A hyperplane of Σ is a subspace of dimension n — 1, that is, of co-dimension one.A blocking set in a projective plane π is a subset S of the points of π such that each line of π contains at least one point in S and at least one point not in S. The following result is shown in [1], [2].


2009 ◽  
Vol 145 (5) ◽  
pp. 1227-1248 ◽  
Author(s):  
Angela Gibney

AbstractThe moduli space $\M _{g,n}$ of n-pointed stable curves of genus g is stratified by the topological type of the curves being parameterized: the closure of the locus of curves with k nodes has codimension k. The one-dimensional components of this stratification are smooth rational curves called F-curves. These are believed to determine all ample divisors. F-conjecture A divisor on $\M _{g,n}$ is ample if and only if it positively intersects theF-curves. In this paper, proving the F-conjecture on $\M _{g,n}$ is reduced to showing that certain divisors on $\M _{0,N}$ for N⩽g+n are equivalent to the sum of the canonical divisor plus an effective divisor supported on the boundary. Numerical criteria and an algorithm are given to check whether a divisor is ample. By using a computer program called the Nef Wizard, written by Daniel Krashen, one can verify the conjecture for low genus. This is done on $\M _g$ for g⩽24, more than doubling the number of cases for which the conjecture is known to hold and showing that it is true for the first genera such that $\M _g$ is known to be of general type.


1995 ◽  
Vol 118 (1) ◽  
pp. 183-188
Author(s):  
Qi Zhang

Let X be a smooth projective variety of dimension n over the field of complex numbers. We denote by Kx the canonical bundle of X. By Mori's theory, if Kx is not numerically effective (i.e. if there exists a curve on X which has negative intersection number with Kx), then there exists an extremal ray ℝ+[C] on X and an elementary contraction fR: X → Y associated with ℝ+[C].fR is called a small contraction if it is bi-rational and an isomorphism in co-dimension one.


2018 ◽  
Vol 19 (3) ◽  
pp. 891-918 ◽  
Author(s):  
Jeffrey D. Achter ◽  
Sebastian Casalaina-Martin ◽  
Charles Vial

We show that the image of the Abel–Jacobi map admits functorially a model over the field of definition, with the property that the Abel–Jacobi map is equivariant with respect to this model. The cohomology of this abelian variety over the base field is isomorphic as a Galois representation to the deepest part of the coniveau filtration of the cohomology of the projective variety. Moreover, we show that this model over the base field is dominated by the Albanese variety of a product of components of the Hilbert scheme of the projective variety, and thus we answer a question of Mazur. We also recover a result of Deligne on complete intersections of Hodge level 1.


Sign in / Sign up

Export Citation Format

Share Document