scholarly journals On the Singular Sheaves in the Fine Simpson Moduli Spaces of 1-dimensional Sheaves

2017 ◽  
Vol 60 (3) ◽  
pp. 522-535 ◽  
Author(s):  
Oleksandr Iena ◽  
Alain Leytem

AbstractIn the Simpson moduli space M of semi-stable sheaves with Hilbert polynomial dm − 1 on a projective plane we study the closed subvariety M' of sheaves that are not locally free on their support. We show that for d ≥4 , it is a singular subvariety of codimension 2 in M. The blow up of M along M' is interpreted as a (partial) modification of M \ M' by line bundles (on support).

Author(s):  
Naoki Koseki

Abstract Let $f \colon X \to Y$ be the blow-up of a smooth projective variety $Y$ along its codimension two smooth closed subvariety. In this paper, we show that the moduli space of stable sheaves on $X$ and $Y$ are connected by a sequence of flip-like diagrams. The result is a higher dimensional generalization of the result of Nakajima and Yoshioka, which is the case of $\dim Y=2$. As an application of our general result, we study the birational geometry of the Hilbert scheme of two points.


2003 ◽  
Vol 14 (10) ◽  
pp. 1097-1120 ◽  
Author(s):  
WEI-PING LI ◽  
ZHENBO QIN

In this paper, we apply the technique of chamber structures of stability polarizations to construct the full moduli space of rank-2 stable sheaves with certain Chern classes on Calabi–Yau manifolds which are anti-canonical divisor of ℙ1×ℙn or a double cover of ℙ1×ℙn. These moduli spaces are isomorphic to projective spaces. As an application, we compute the holomorphic Casson invariants defined by Donaldson and Thomas.


2010 ◽  
Vol 21 (05) ◽  
pp. 639-664 ◽  
Author(s):  
YOUNG-HOON KIEM ◽  
HAN-BOM MOON

We compare the Kontsevich moduli space [Formula: see text] of stable maps to projective space with the quasi-map space ℙ( Sym d(ℂ2) ⊗ ℂn)//SL(2). Consider the birational map [Formula: see text] which assigns to an n tuple of degree d homogeneous polynomials f1, …, fn in two variables, the map f = (f1 : ⋯ : fn) : ℙ1 → ℙn-1. In this paper, for d = 3, we prove that [Formula: see text] is the composition of three blow-ups followed by two blow-downs. Furthermore, we identify the blow-up/down centers explicitly in terms of the moduli spaces [Formula: see text] with d = 1, 2. In particular, [Formula: see text] is the SL(2)-quotient of a smooth rational projective variety. The degree two case [Formula: see text], which is the blow-up of ℙ( Sym 2ℂ2 ⊗ ℂn)//SL(2) along ℙn-1, is worked out as a preliminary example.


2010 ◽  
Vol 21 (04) ◽  
pp. 497-522 ◽  
Author(s):  
INDRANIL BISWAS ◽  
MAINAK PODDAR

Let X be a compact connected Riemann surface of genus at least two. Let r be a prime number and ξ → X a holomorphic line bundle such that r is not a divisor of degree ξ. Let [Formula: see text] denote the moduli space of stable vector bundles over X of rank r and determinant ξ. By Γ we will denote the group of line bundles L over X such that L⊗r is trivial. This group Γ acts on [Formula: see text] by the rule (E, L) ↦ E ⊗ L. We compute the Chen–Ruan cohomology of the corresponding orbifold.


2003 ◽  
Vol 14 (08) ◽  
pp. 837-864 ◽  
Author(s):  
Nobuaki Onishi ◽  
Kōta Yoshioka

We consider the singuralities of 2-dimensional moduli spaces of semi-stable sheaves on k3 surfaces. We show that the moduli space is normal, in particular the siguralities are rational double points. We also describe the exceptional locus on the resolution in terms of exceptional sheaves.


2018 ◽  
Vol 16 (1) ◽  
pp. 46-62
Author(s):  
Oleksandr Iena

AbstractA parametrization of the fine Simpson moduli spaces of 1-dimensional sheaves supported on plane quartics is given: we describe the gluing of the Brill-Noether loci described by Drézet and Maican, provide a common parameter space for these loci, and show that the Simpson moduli space M = M4m ± 1(ℙ2) is a blow-down of a blow-up of a projective bundle over a smooth moduli space of Kronecker modules. Two different proofs of this statement are given.


Author(s):  
Indranil Biswas ◽  
Francesco Bottacin ◽  
Tomás L. Gómez

AbstractLet X be a complex irreducible smooth projective curve, and let $${{\mathbb {L}}}$$ L be an algebraic line bundle on X with a nonzero section $$\sigma _0$$ σ 0 . Let $${\mathcal {M}}$$ M denote the moduli space of stable Hitchin pairs $$(E,\, \theta )$$ ( E , θ ) , where E is an algebraic vector bundle on X of fixed rank r and degree $$\delta $$ δ , and $$\theta \, \in \, H^0(X,\, {\mathcal {E}nd}(E)\otimes K_X\otimes {{\mathbb {L}}})$$ θ ∈ H 0 ( X , E n d ( E ) ⊗ K X ⊗ L ) . Associating to every stable Hitchin pair its spectral data, an isomorphism of $${\mathcal {M}}$$ M with a moduli space $${\mathcal {P}}$$ P of stable sheaves of pure dimension one on the total space of $$K_X\otimes {{\mathbb {L}}}$$ K X ⊗ L is obtained. Both the moduli spaces $${\mathcal {P}}$$ P and $${\mathcal {M}}$$ M are equipped with algebraic Poisson structures, which are constructed using $$\sigma _0$$ σ 0 . Here we prove that the above isomorphism between $${\mathcal {P}}$$ P and $${\mathcal {M}}$$ M preserves the Poisson structures.


1980 ◽  
Vol 77 ◽  
pp. 47-60 ◽  
Author(s):  
Hiroshi Umemura

Let X be a projective non-singular variety and H an ample line bundle on X. The moduli space of H-stable vector bundles exists by Maruyama [4]. If X is a curve defined over C, the structure of the moduli space (or its compactification) M(X, d, r) of stable vector bundles of degree d and rank r on X is studied in detail. It is known that the variety M(X, d, r) is irreducible. Let L be a line bundle of degree d and let M(X, L, r) denote the closed subvariety of M(X, d, r) consisting of all the stable bundles E with det E = L.


2013 ◽  
Vol 24 (12) ◽  
pp. 1350098 ◽  
Author(s):  
MARIO MAICAN

Using the Białynicki-Birula method, we determine the additive structure of the integral homology groups of the moduli spaces of semi-stable sheaves on the projective plane having rank and Chern classes (5, 1, 4), (7, 2, 6), respectively, (0, 5, 19). We compute the Hodge numbers of these moduli spaces.


2010 ◽  
Vol 21 (01) ◽  
pp. 25-46 ◽  
Author(s):  
B. ANDREAS ◽  
D. HERNÁNDEZ RUIPÉREZ ◽  
D. SÁNCHEZ GÓMEZ

We construct stable sheaves over K3 fibrations using a relative Fourier-Mukai transform which describes the sheaves in terms of spectral data similar to the construction for elliptic fibrations. On K3 fibered Calabi–Yau threefolds we show that the Fourier-Mukai transform induces an embedding of the relative Jacobian of spectral line bundles on spectral covers into the moduli space of sheaves of given invariants. This makes the moduli space of spectral sheaves a generic torus fibration over the moduli space of curves of the given arithmetic genus on the Calabi–Yau manifold.


Sign in / Sign up

Export Citation Format

Share Document