On a delay ratio-dependent predator–prey system with feedback controls and shelter for the prey

2018 ◽  
Vol 11 (07) ◽  
pp. 1850095
Author(s):  
Changyou Wang ◽  
Linrui Li ◽  
Yuqian Zhou ◽  
Rui Li

In this paper, a class of three-species multi-delay Lotka–Volterra ratio-dependent predator–prey model with feedback controls and shelter for the prey is considered. A set of easily verifiable sufficient conditions which guarantees the permanence of the system and the global attractivity of positive solution for the predator–prey system are established by developing some new analysis methods and using the theory of differential inequalities as well as constructing a suitable Lyapunov function. Furthermore, some conditions for the existence, uniqueness and stability of positive periodic solution for the corresponding periodic system are obtained by using the fixed point theory and some new analysis techniques. In addition, some numerical solutions of the equations describing the system are given to show that the obtained criteria are new, general, and easily verifiable. Finally, we still solve numerically the corresponding stochastic predator–prey models with multiplicative noise sources, and obtain some new interesting dynamical behaviors of the system. At the same time, the influence of the delays and shelters on the dynamics behavior of the system is also considered by solving numerically the predator–prey models.

2013 ◽  
Vol 765-767 ◽  
pp. 327-330
Author(s):  
Chang You Wang ◽  
Xiang Wei Li ◽  
Hong Yuan

This paper is concerned with a Lotka-Volterra predator-prey system with ratio-dependent functional responses and feedback controls. By developing a new analysis technique, we establish the sufficient conditions which guarantee the permanence of the model.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Jiangbin Chen ◽  
Shengbin Yu

A new set of sufficient conditions for the permanence of a ratio-dependent predator-prey system with Holling type III functional response and feedback controls are obtained. The result shows that feedback control variables have no influence on the persistent property of the system, thus improving and supplementing the main result of Yang (2008).


2005 ◽  
Vol 2005 (2) ◽  
pp. 153-169 ◽  
Author(s):  
Fengde Chen

With the help of a continuation theorem based on Gaines and Mawhin's coincidence degree, easily verifiable criteria are established for the global existence of positive periodic solutions of a delayed ratio-dependent predator-prey system with stage structure for predator. The approach involves some new technique of priori estimate. For the system without delay, by constructing a suitable Lyapunov function, some sufficient conditions which guarantee the existence of a unique global attractive positive periodic solution are obtained. Those results have further applications in population dynamics.


2009 ◽  
Vol 02 (04) ◽  
pp. 419-442 ◽  
Author(s):  
FENGYAN ZHOU

A new non-autonomous predator-prey system with the effect of viruses on the prey is investigated. By using the method of coincidence degree, some sufficient conditions are obtained for the existence of a positive periodic solution. Moreover, with the help of an appropriately chosen Lyapunov function, the global attractivity of the positive periodic solution is discussed. In the end, a numerical simulation is used to illustrate the feasibility of our results.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Cong Zhang ◽  
Nan-jing Huang ◽  
Chuan-xian Deng

We consider a Leslie predator-prey system with mutual interference and feedback controls. For general nonautonomous case, by using differential inequality theory and constructing a suitable Lyapunov functional, we obtain some sufficient conditions which guarantee the permanence and the global attractivity of the system. For the periodic case, we obtain some sufficient conditions which guarantee the existence, uniqueness, and stability of a positive periodic solution.


2004 ◽  
Vol 2004 (2) ◽  
pp. 325-343 ◽  
Author(s):  
Lin-Lin Wang ◽  
Wan-Tong Li

The existence of positive periodic solutions for a delayed discrete predator-prey model with Holling-type-III functional responseN1(k+1)=N1(k)exp{b1(k)−a1(k)N1(k−[τ1])−α1(k)N1(k)N2(k)/(N12(k)+m2N22(k))},N2(k+1)=N2(k)exp{−b2(k)+α2(k)N12(k−[τ2])/(N12(k−[τ2])+m2N22(k−[τ2]))}is established by using the coincidence degree theory. We also present sufficient conditions for the globally asymptotical stability of this system when all the delays are zero. Our investigation gives an affirmative exemplum for the claim that the ratio-dependent predator-prey theory is more reasonable than the traditional prey-dependent predator-prey theory.


2012 ◽  
Vol 05 (04) ◽  
pp. 1250014 ◽  
Author(s):  
LIJUAN ZHA ◽  
JING-AN CUI ◽  
XUEYONG ZHOU

Ratio-dependent predator–prey models are favored by many animal ecologists recently as more suitable ones for predator–prey interactions where predation involves searching process. In this paper, a ratio-dependent predator–prey model with stage structure and time delay for prey is proposed and analyzed. In this model, we only consider the stage structure of immature and mature prey species and not consider the stage structure of predator species. We assume that the predator only feed on the mature prey and the time for prey from birth to maturity represented by a constant time delay. At first, we investigate the permanence and existence of the proposed model and sufficient conditions are derived. Then the global stability of the nonnegative equilibria are derived. We also get the sufficient criteria for stability switch of the positive equilibrium. Finally, some numerical simulations are carried out for supporting the analytic results.


2008 ◽  
Vol 2008 ◽  
pp. 1-19 ◽  
Author(s):  
Jinghui Yang

A ratio-dependent predator-prey system with Holling type III functional response and feedback controls is proposed. By constructing a suitable Lyapunov function and using the comparison theorem of difference equation, sufficient conditions which ensure the permanence and global attractivity of the system are obtained. After that, under some suitable conditions, we show that the predator speciesywill be driven to extinction. Examples together with their numerical simulations show that the main results are verifiable.


Filomat ◽  
2017 ◽  
Vol 31 (18) ◽  
pp. 5811-5825
Author(s):  
Xinhong Zhang

In this paper we study the global dynamics of stochastic predator-prey models with non constant mortality rate and Holling type II response. Concretely, we establish sufficient conditions for the extinction and persistence in the mean of autonomous stochastic model and obtain a critical value between them. Then by constructing appropriate Lyapunov functions, we prove that there is a nontrivial positive periodic solution to the non-autonomous stochastic model. Finally, numerical examples are introduced to illustrate the results developed.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yumin Wu ◽  
Fengde Chen ◽  
Caifeng Du

AbstractIn this paper, we consider a nonautonomous predator–prey model with Holling type II schemes and a prey refuge. By applying the comparison theorem of differential equations and constructing a suitable Lyapunov function, sufficient conditions that guarantee the permanence and global stability of the system are obtained. By applying the oscillation theory and the comparison theorem of differential equations, a set of sufficient conditions that guarantee the extinction of the predator of the system is obtained.


Sign in / Sign up

Export Citation Format

Share Document