scholarly journals Products of protopological groups

2001 ◽  
Vol 28 (7) ◽  
pp. 433-435
Author(s):  
Julie C. Jones

Montgomery and Zippin saied that a group is approximated by Lie groups if every neighborhood of the identity contains an invariant subgroupHsuch thatG/His topologically isomorphic to a Lie group. Bagley, Wu, and Yang gave a similar definition, which they called a pro-Lie group. Covington extended this concept to a protopological group. Covington showed that protopological groups possess many of the characteristics of topological groups. In particular, Covington showed that in a special case, the product of protopological groups is a protopological group. In this note, we give a characterization theorem for protopological groups and use it to generalize her result about products to the category of all protopological groups.

2013 ◽  
Vol 15 (05) ◽  
pp. 1350018 ◽  
Author(s):  
JOSEPH E. BORZELLINO ◽  
VICTOR BRUNSDEN

We consider four notions of maps between smooth C∞ orbifolds [Formula: see text], [Formula: see text] with [Formula: see text] compact (without boundary). We show that one of these notions is natural and necessary in order to uniquely define the notion of orbibundle pullback. For the notion of complete orbifold map, we show that the corresponding set of Cr maps between [Formula: see text] and [Formula: see text] with the Cr topology carries the structure of a smooth C∞ Banach (r finite)/Fréchet (r = ∞) manifold. For the notion of complete reduced orbifold map, the corresponding set of Cr maps between [Formula: see text] and [Formula: see text] with the Cr topology carries the structure of a smooth C∞ Banach (r finite)/Fréchet (r = ∞) orbifold. The remaining two notions carry a stratified structure: The Cr orbifold maps between [Formula: see text] and [Formula: see text] is locally a stratified space with strata modeled on smooth C∞ Banach (r finite)/Fréchet (r = ∞) manifolds while the set of Cr reduced orbifold maps between [Formula: see text] and [Formula: see text] locally has the structure of a stratified space with strata modeled on smooth C∞ Banach (r finite)/Fréchet (r = ∞) orbifolds. Furthermore, we give the explicit relationship between these notions of orbifold map. Applying our results to the special case of orbifold diffeomorphism groups, we show that they inherit the structure of C∞ Banach (r finite)/Fréchet (r = ∞) manifolds. In fact, for r finite they are topological groups, and for r = ∞ they are convenient Fréchet Lie groups.


2011 ◽  
Vol 2011 ◽  
pp. 1-23 ◽  
Author(s):  
Maryna Nesterenko ◽  
Jiří Patera ◽  
Agnieszka Tereszkiewicz

Recursive algebraic construction of two infinite families of polynomials innvariables is proposed as a uniform method applicable to every semisimple Lie group of rankn. Its result recognizes Chebyshev polynomials of the first and second kind as the special case of the simple group of typeA1. The obtained not Laurent-type polynomials are equivalent to the partial cases of the Macdonald symmetric polynomials. Recurrence relations are shown for the Lie groups of typesA1,A2,A3,C2,C3,G2, andB3together with lowest polynomials.


Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Liu ◽  
Jianfeng Dong

Assume thatGis a stratified Lie group andQis the homogeneous dimension ofG. Let-Δbe the sub-Laplacian onGandW≢0a nonnegative potential belonging to certain reverse Hölder classBsfors≥Q/2. LetL=-Δ+Wbe a Schrödinger operator on the stratified Lie groupG. In this paper, we prove the boundedness of some integral operators related toL, such asL-1∇2,L-1W, andL-1(-Δ) on the spaceBMOL(G).


2021 ◽  
pp. 1-29
Author(s):  
DREW HEARD

Abstract Greenlees has conjectured that the rational stable equivariant homotopy category of a compact Lie group always has an algebraic model. Based on this idea, we show that the category of rational local systems on a connected finite loop space always has a simple algebraic model. When the loop space arises from a connected compact Lie group, this recovers a special case of a result of Pol and Williamson about rational cofree G-spectra. More generally, we show that if K is a closed subgroup of a compact Lie group G such that the Weyl group W G K is connected, then a certain category of rational G-spectra “at K” has an algebraic model. For example, when K is the trivial group, this is just the category of rational cofree G-spectra, and this recovers the aforementioned result. Throughout, we pay careful attention to the role of torsion and complete categories.


2013 ◽  
Vol 12 (08) ◽  
pp. 1350055
Author(s):  
SONIA L'INNOCENTE ◽  
FRANÇOISE POINT ◽  
CARLO TOFFALORI

Given a compact linear Lie group G, we form a natural expansion of the theory of the reals where G and the graph of a logarithm function on G live. We prove its effective model-completeness and decidability modulo a suitable variant of Schanuel's Conjecture.


2013 ◽  
Vol 10 (07) ◽  
pp. 1320011 ◽  
Author(s):  
FATMA KARAKUŞ ◽  
YUSUF YAYLI

In this study, Fermi–Walker derivative, Fermi–Walker parallelism, non-rotating frame, Fermi–Walker termed Darboux vector concepts are given for Lie groups in E4. First, we get any Frénet curve and any vector field along the Frénet curve in a Lie group. Then, the Fermi–Walker derivative is defined for the Lie group. Fermi–Walker derivative and Fermi–Walker parallelism are analyzed in Lie groups. Finally, the necessary conditions for Fermi–Walker parallelism are explained.


2007 ◽  
Vol 18 (07) ◽  
pp. 783-795 ◽  
Author(s):  
TARO YOSHINO

For a nilpotent Lie group G and its closed subgroup L, Lipsman [13] conjectured that the L-action on some homogeneous space of G is proper in the sense of Palais if and only if the action is free. Nasrin [14] proved this conjecture assuming that G is a 2-step nilpotent Lie group. However, Lipsman's conjecture fails for the 4-step nilpotent case. This paper gives an affirmative solution to Lipsman's conjecture for the 3-step nilpotent case.


Author(s):  
Ignasi Mundet i Riera

This chapter explains the correspondence between local systems on a punctured Riemann surface with the structure group being a real reductive Lie group G, and parabolic G-Higgs bundles. The chapter describes the objects involved in this correspondence, taking some time to motivate them by recalling the definitions of G-Higgs bundles without parabolic structure and of parabolic vector bundles. Finally, it explains the relevant polystability condition and the correspondence between local systems and Higgs bundles.


1976 ◽  
Vol 19 (4) ◽  
pp. 435-439 ◽  
Author(s):  
D. Ž. Djoković

Let G be a real Lie group, A a closed subgroup of G and B an analytic subgroup of G. Assume that B normalizes A and that AB is closed in G. Then our main result (Theorem 1) asserts that .This result generalizes Lemma 2 in the paper [4], G. Hochschild has pointed out to me that the proof of that lemma given in [4] is not complete but that it can be easily completed.


Sign in / Sign up

Export Citation Format

Share Document