Influence of sub-mesoscale topography on daytime precipitation associated with thermally driven local circulations over a mountainous region
AbstractIn this study, the effect of sub-mesoscale topography (i.e., topographical features smaller than a few kilometers in size) on precipitation associated with thermally driven local circulations over a mountainous region is examined in the absence of synoptic-scale precipitation systems through a 100-m-mesh large-eddy simulation experiment. The observed effect of topography on precipitation is different to that identified in previous studies; sub-mesoscale topography is observed to induce a weakening effect on precipitation in this study, while previous studies have suggested that sub-mesoscale topography enhances precipitation. This discrepancy between studies is owing to differences in the scale of the topography and the precipitation-inducing system under consideration. Previous studies have focused on precipitation associated with synoptic-scale systems, where mechanical orographic forcing is dominant. The mechanism of the topographic effect where thermal orographic forcing is dominant was clarified in this study. Under thermally driven local circulation, the convergence of upslope flow near large-scale mountain ridges is one of the main causes of precipitation. Sub-mesoscale topographic features promote the detachment of upslope flow from the mountain surface and vertical mixing in the boundary layer. This detachment and mixing result in a weakening of convergence and updraft and reduction of equivalent potential temperature around the ridge that explains the observed weakening effect on precipitation. Cold pools formed by evaporation of rainfall associated with upslope flow enhance the weakening effect. These results confirm the importance of sub-mesoscale topography in orographic precipitation.