scholarly journals Asymptotic behavior of third order delay difference equations with a negative middle term

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
S. H. Saker ◽  
S. Selvarangam ◽  
S. Geetha ◽  
E. Thandapani ◽  
J. Alzabut

AbstractIn this paper, we establish some sufficient conditions which ensure that the solutions of the third order delay difference equation with a negative middle term $$ \Delta \bigl(a_{n}\Delta (\Delta w_{n})^{\alpha } \bigr)-p_{n}(\Delta w_{n+1})^{ \alpha }-q_{n}h(w_{n-l})=0,\quad n\geq n_{0}, $$ Δ ( a n Δ ( Δ w n ) α ) − p n ( Δ w n + 1 ) α − q n h ( w n − l ) = 0 , n ≥ n 0 , are oscillatory. Moreover, we study the asymptotic behavior of the nonoscillatory solutions. Two illustrative examples are included for illustration.

Filomat ◽  
2018 ◽  
Vol 32 (14) ◽  
pp. 4981-4991
Author(s):  
K.S. Vidhyaa ◽  
C. Dharuman ◽  
John Graef ◽  
E. Thandapani

The authors consider the third order neutral delay difference equation with positive and negative coefficients ?(an?(bn?(xn + pxn-m)))+pnf(xn-k)- qn1(xn-l) = 0, n ? n0, and give some new sufficient conditions for the existence of nonoscillatory solutions. Banach?s fixed point theorem plays a major role in the proofs. Examples are provided to illustrate their main results.


2021 ◽  
Vol 71 (1) ◽  
pp. 129-146
Author(s):  
Chittaranjan Behera ◽  
Radhanath Rath ◽  
Prayag Prasad Mishra

Abstract In this article we obtain sufficient conditions for the oscillation of all solutions of the higher-order delay difference equation Δ m ( y n − ∑ j = 1 k p n j y n − m j ) + v n G ( y σ ( n ) ) − u n H ( y α ( n ) ) = f n , $$\begin{array}{} \displaystyle \Delta^{m}\big(y_n-\sum_{j=1}^k p_n^j y_{n-m_j}\big) + v_nG(y_{\sigma(n)})-u_nH(y_{\alpha(n)})=f_n\,, \end{array}$$ where m is a positive integer and Δ xn = x n+1 − xn . Also we obtain necessary conditions for a particular case of the above equation. We illustrate our results with examples for which it seems no result in the literature can be applied.


2015 ◽  
Vol 3 (2) ◽  
pp. 61
Author(s):  
A. Murgesan ◽  
P. Sowmiya

<p>In this paper, we obtained some necessary and sufficient conditions for oscillation of all the solutions of the first order neutral delay difference equation with constant coefficients of the form <br />\begin{equation*} \quad \quad \quad \quad \Delta[x(n)-px(n-\tau)]+qx(n-\sigma)=0, \quad \quad n\geq n_0 \quad \quad \quad \quad \quad \quad {(*)} \end{equation*}<br />by constructing several suitable auxiliary functions. Some examples are also given to illustrate our results.</p>


2011 ◽  
Vol 48 (1) ◽  
pp. 135-143 ◽  
Author(s):  
Ivan Mojsej ◽  
Alena Tartal’ová

Abstract The aim of this paper is to present some results concerning with the asymptotic behavior of solutions of nonlinear differential equations of the third-order with quasiderivatives. In particular, we state the necessary and sufficient conditions ensuring the existence of nonoscillatory solutions tending to zero as t → ∞.


Author(s):  
Martin Bohner ◽  
Srinivasan Geetha ◽  
Srinivasan Selvarangam ◽  
Ethiraju Thandapani

The aim of this paper is to investigate the oscillatory and asymptotic behavior of solutions of a third-order delay difference equation. By using comparison theorems, we deduce oscillation of the difference equation from its relation to certain associated first-order delay difference equations or inequalities. Examples are given to illustrate the main results.<br /><br />


2007 ◽  
Vol 38 (4) ◽  
pp. 323-333 ◽  
Author(s):  
E. Thandapani ◽  
P. Mohan Kumar

In this paper, the authors establish some sufficient conditions for oscillation and nonoscillation of the second order nonlinear neutral delay difference equation$$ \Delta^2 (x_n-p_nx_{n-k}) + q_nf(x_{n-\ell}) = 0, ~~n \ge n_0 $$where $ \{p_n\} $ and $ \{q_n\} $ are non-negative sequences with $ 0$


2001 ◽  
Vol 28 (5) ◽  
pp. 301-306 ◽  
Author(s):  
Jianchu Jiang

We obtain some oscillation criteria for solutions of the nonlinear delay difference equation of the formxn+1−xn+pn∏j=1mxn−kjαj=0.


2005 ◽  
Vol 2005 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Cemil Tunç

We establish sufficient conditions under which all solutions of the third-order nonlinear differential equation x ⃛+ψ(x,x˙,x¨)x¨+f(x,x˙)=p(t,x,x˙,x¨) are bounded and converge to zero as t→∞.


Sign in / Sign up

Export Citation Format

Share Document