scholarly journals Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups

2017 ◽  
Vol 25 (2) ◽  
pp. 99-135
Author(s):  
Rory Biggs

Abstract We investigate the isometry groups of the left-invariant Riemannian and sub-Riemannian structures on simply connected three-dimensional Lie groups. More specifically, we determine the isometry group for each normalized structure and hence characterize for exactly which structures (and groups) the isotropy subgroup of the identity is contained in the group of automorphisms of the Lie group. It turns out (in both the Riemannian and sub-Riemannian cases) that for most structures any isometry is the composition of a left translation and a Lie group automorphism.

2017 ◽  
Vol 15 (01) ◽  
pp. 1850015
Author(s):  
Farhad Asgari ◽  
Hamid Reza Salimi Moghaddam

Let [Formula: see text] be a Lie group equipped with a left invariant Randers metric of Berward type [Formula: see text], with underlying left invariant Riemannian metric [Formula: see text]. Suppose that [Formula: see text] and [Formula: see text] are lifted Randers and Riemannian metrics arising from [Formula: see text] and [Formula: see text] on the tangent Lie group [Formula: see text] by vertical and complete lifts. In this paper, we study the relations between the flag curvature of the Randers manifold [Formula: see text] and the sectional curvature of the Riemannian manifold [Formula: see text] when [Formula: see text] is of Berwald type. Then we give all simply connected three-dimensional Lie groups such that their tangent bundles admit Randers metrics of Berwarld type and their geodesics vectors.


Author(s):  
Á. FIGULA ◽  
A. AL-ABAYECHI

Abstract We prove that the solvability of the multiplication group Mult(L) of a connected simply connected topological loop L of dimension three forces that L is classically solvable. Moreover, L is congruence solvable if and only if either L has a non-discrete centre or L is an abelian extension of a normal subgroup ℝ by the 2-dimensional nonabelian Lie group or by an elementary filiform loop. We determine the structure of indecomposable solvable Lie groups which are multiplication groups of three-dimensional topological loops. We find that among the six-dimensional indecomposable solvable Lie groups having a four-dimensional nilradical there are two one-parameter families and a single Lie group which consist of the multiplication groups of the loops L. We prove that the corresponding loops are centrally nilpotent of class 2.


2017 ◽  
Vol 28 (06) ◽  
pp. 1750048 ◽  
Author(s):  
Takahiro Hashinaga ◽  
Hiroshi Tamaru

In this paper, we define the corresponding submanifolds to left-invariant Riemannian metrics on Lie groups, and study the following question: does a distinguished left-invariant Riemannian metric on a Lie group correspond to a distinguished submanifold? As a result, we prove that the solvsolitons on three-dimensional simply-connected solvable Lie groups are completely characterized by the minimality of the corresponding submanifolds.


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Ameer Al-Abayechi ◽  
Ágota Figula

AbstractIn this paper we deal with the class $$\mathcal {C}$$ C of decomposable solvable Lie groups having dimension six. We determine those Lie groups in $$\mathcal {C}$$ C and their subgroups which are the multiplication groups Mult(L) and the inner mapping groups Inn(L) for three-dimensional connected simply connected topological loops L. This result completes the classification of the at most 6-dimensional solvable multiplication Lie groups of the loops L. Moreover, we obtain that every at most 3-dimensional connected topological proper loop having a solvable Lie group of dimension at most six as its multiplication group is centrally nilpotent of class two.


Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.


2020 ◽  
Vol 58 (4) ◽  
pp. 477-496
Author(s):  
Sigmundur Gudmundsson ◽  
Marko Sobak

Abstract In this paper we introduce the notion of complex isoparametric functions on Riemannian manifolds. These are then employed to devise a general method for constructing proper r-harmonic functions. We then apply this to construct the first known explicit proper r-harmonic functions on the Lie group semidirect products $${{\mathbb {R}}}^m \ltimes {{\mathbb {R}}}^n$$ R m ⋉ R n and $${{\mathbb {R}}}^m \ltimes \mathrm {H}^{2n+1}$$ R m ⋉ H 2 n + 1 , where $$\mathrm {H}^{2n+1}$$ H 2 n + 1 denotes the classical $$(2n+1)$$ ( 2 n + 1 ) -dimensional Heisenberg group. In particular, we construct such examples on all the simply connected irreducible four-dimensional Lie groups.


2007 ◽  
Vol 17 (01) ◽  
pp. 115-139 ◽  
Author(s):  
L. MAGNIN

Integrable complex structures on indecomposable 6-dimensional nilpotent real Lie algebras have been computed in a previous paper, along with normal forms for representatives of the various equivalence classes under the action of the automorphism group. Here we go to the connected simply connected Lie group G0 associated to such a Lie algebra 𝔤. For each normal form J of integrable complex structures on 𝔤, we consider the left invariant complex manifold G = (G0, J) associated to G0 and J. We explicitly compute a global holomorphic chart for G and we write down the multiplication in that chart.


1996 ◽  
Vol 16 (4) ◽  
pp. 703-717
Author(s):  
K. Robert Gutschera

AbstractGiven a connected Lie group G acting ergodically on a space S with finite invariant measure, one can ask when G will contain single elements (or one-parameter subgroups) that still act ergodically. For a compact simple group or the isometry group of the plane, or any group projecting onto such groups, an ergodic action may have no ergodic elements, but for any other connected Lie group ergodic elements will exist. The proof uses the unitary representation theory of Lie groups and Lie group structure theory.


1996 ◽  
Vol 39 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Chi-Kwong Li ◽  
Wayne Whitney

AbstractA norm on ℝn is said to be permutation invariant if its value is preserved under permutation of the coordinates of a vector. The isometry group of such a norm must be closed, contain Sn and —I, and be conjugate to a subgroup of On, the orthogonal group. Motivated by this, we are interested in classifying all closed groups G such that 〈—I,Sn〉 < G < On. We use the theory of Lie groups to classify all possible infinite groups G, and use the theory of finite reflection groups to classify all possible finite groups G. In keeping with the original motivation, all groups arising are shown to be isometry groups. This completes the work of Gordon and Lewis, who studied the same problem and obtained the results for n ≥ 13.


Sign in / Sign up

Export Citation Format

Share Document