Solvability and stability of nonlinear hybrid ∆-difference equations of fractional-order

Author(s):  
Jehad Alzabut ◽  
A. George Maria Selvam ◽  
Dhakshinamoorthy Vignesh ◽  
Yousef Gholami

Abstract In this paper, we study a type of nonlinear hybrid Δ-difference equations of fractional-order. The main objective is to establish some stability criteria including the Ulam–Hyers stability, generalized Ulam–Hyers stability together with the Mittag-Leffler–Ulam–Hyers stability for the addressed problem. Prior to the stabilization processes, solvability criteria for the existence and uniqueness of solutions are considered. For this purpose, a hybrid fixed point theorem for triple operators and the Banach contraction mapping principle are applied, respectively. For the sake of illustrating the practical impact of the proposed theoretical criteria, we finish the paper with particular examples.

2021 ◽  
Vol 5 (4) ◽  
pp. 195
Author(s):  
Bashir Ahmad ◽  
Sotiris K. Ntouyas

This paper is concerned with the existence and uniqueness of solutions for a Hilfer–Hadamard fractional differential equation, supplemented with mixed nonlocal (multi-point, fractional integral multi-order and fractional derivative multi-order) boundary conditions. The existence of a unique solution is obtained via Banach contraction mapping principle, while the existence results are established by applying the fixed point theorems due to Krasnoselskiĭ and Schaefer and Leray–Schauder nonlinear alternatives. We demonstrate the application of the main results by presenting numerical examples. We also derive the existence results for the cases of convex and non-convex multifunctions involved in the multi-valued analogue of the problem at hand.


1991 ◽  
Vol 4 (2) ◽  
pp. 161-164 ◽  
Author(s):  
Jaroslaw Kwapisz

A new simple proof of existence and uniqueness of solutions of the Volterra integral equation in Lebesque spaces is given. It is shown that the weighted norm technique and the Banach contraction mapping principle can be applied (as in the case of continuous functions space).


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Warissara Saengthong ◽  
Ekkarath Thailert ◽  
Sotiris K. Ntouyas

AbstractIn this paper, we study existence and uniqueness of solutions for a system of Hilfer–Hadamard sequential fractional differential equations via standard fixed point theorems. The existence is proved by using the Leray–Schauder alternative, while the existence and uniqueness by the Banach contraction mapping principle. Illustrative examples are also discussed.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 174
Author(s):  
Chanakarn Kiataramkul ◽  
Weera Yukunthorn ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

In this paper, we initiate the study of existence of solutions for a fractional differential system which contains mixed Riemann–Liouville and Hadamard–Caputo fractional derivatives, complemented with nonlocal coupled fractional integral boundary conditions. We derive necessary conditions for the existence and uniqueness of solutions of the considered system, by using standard fixed point theorems, such as Banach contraction mapping principle and Leray–Schauder alternative. Numerical examples illustrating the obtained results are also presented.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shuqi Wang ◽  
Zhanbing Bai

AbstractIn this article, the existence and uniqueness of solutions for a multi-point fractional boundary value problem involving two different left and right fractional derivatives with p-Laplace operator is studied. A novel approach is used to acquire the desired results, and the core of the method is Banach contraction mapping principle. Finally, an example is given to verify the results.


2021 ◽  
Vol 11 (11) ◽  
pp. 4798
Author(s):  
Hari Mohan Srivastava ◽  
Sotiris K. Ntouyas ◽  
Mona Alsulami ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad

The main object of this paper is to investigate the existence of solutions for a self-adjoint coupled system of nonlinear second-order ordinary differential equations equipped with nonlocal multi-point coupled boundary conditions on an arbitrary domain. We apply the Leray–Schauder alternative, the Schauder fixed point theorem and the Banach contraction mapping principle in order to derive the main results, which are then well-illustrated with the aid of several examples. Some potential directions for related further researches are also indicated.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chanon Promsakon ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

This paper is concerned with the existence and uniqueness of solutions for a new class of boundary value problems, consisting by Hilfer-Hadamard fractional differential equations, supplemented with nonlocal integro-multipoint boundary conditions. The existence of a unique solution is obtained via Banach contraction mapping principle, while the existence results are established by applying Schaefer and Krasnoselskii fixed point theorems as well as Leray-Schauder nonlinear alternative. Examples illustrating the main results are also constructed.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hüseyin Aktuğlu ◽  
Mehmet Ali Özarslan

We consider the model of a Caputo -fractional boundary value problem involving -Laplacian operator. By using the Banach contraction mapping principle, we prove that, under some conditions, the suggested model of the Caputo -fractional boundary value problem involving -Laplacian operator has a unique solution for both cases of and . It is interesting that in both cases solvability conditions obtained here depend on , , and the order of the Caputo -fractional differential equation. Finally, we illustrate our results with some examples.


2019 ◽  
Vol 3 (2) ◽  
pp. 27 ◽  
Author(s):  
Ayşegül Keten ◽  
Mehmet Yavuz ◽  
Dumitru Baleanu

We investigated existence and uniqueness conditions of solutions of a nonlinear differential equation containing the Caputo–Fabrizio operator in Banach spaces. The mentioned derivative has been proposed by using the exponential decay law and hence it removed the computational complexities arising from the singular kernel functions inherit in the conventional fractional derivatives. The method used in this study is based on the Banach contraction mapping principle. Moreover, we gave a numerical example which shows the applicability of the obtained results.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ahmed Salem ◽  
Noorah Mshary

In this work, we give sufficient conditions to investigate the existence and uniqueness of solution to fractional-order Langevin equation involving two distinct fractional orders with unprecedented conditions (three-point boundary conditions including two nonlocal integrals). The problem is introduced to keep track of the progress made on exploring the existence and uniqueness of solution to the fractional-order Langevin equation. As a result of employing the so-called Krasnoselskii and Leray-Schauder alternative fixed point theorems and Banach contraction mapping principle, some novel results are presented in regarding to our main concern. These results are illustrated through providing three examples for completeness.


Sign in / Sign up

Export Citation Format

Share Document