scholarly journals On the fine Simpson moduli spaces of 1-dimensional sheaves supported on plane quartics

2018 ◽  
Vol 16 (1) ◽  
pp. 46-62
Author(s):  
Oleksandr Iena

AbstractA parametrization of the fine Simpson moduli spaces of 1-dimensional sheaves supported on plane quartics is given: we describe the gluing of the Brill-Noether loci described by Drézet and Maican, provide a common parameter space for these loci, and show that the Simpson moduli space M = M4m ± 1(ℙ2) is a blow-down of a blow-up of a projective bundle over a smooth moduli space of Kronecker modules. Two different proofs of this statement are given.

2017 ◽  
Vol 60 (3) ◽  
pp. 522-535 ◽  
Author(s):  
Oleksandr Iena ◽  
Alain Leytem

AbstractIn the Simpson moduli space M of semi-stable sheaves with Hilbert polynomial dm − 1 on a projective plane we study the closed subvariety M' of sheaves that are not locally free on their support. We show that for d ≥4 , it is a singular subvariety of codimension 2 in M. The blow up of M along M' is interpreted as a (partial) modification of M \ M' by line bundles (on support).


2010 ◽  
Vol 21 (05) ◽  
pp. 639-664 ◽  
Author(s):  
YOUNG-HOON KIEM ◽  
HAN-BOM MOON

We compare the Kontsevich moduli space [Formula: see text] of stable maps to projective space with the quasi-map space ℙ( Sym d(ℂ2) ⊗ ℂn)//SL(2). Consider the birational map [Formula: see text] which assigns to an n tuple of degree d homogeneous polynomials f1, …, fn in two variables, the map f = (f1 : ⋯ : fn) : ℙ1 → ℙn-1. In this paper, for d = 3, we prove that [Formula: see text] is the composition of three blow-ups followed by two blow-downs. Furthermore, we identify the blow-up/down centers explicitly in terms of the moduli spaces [Formula: see text] with d = 1, 2. In particular, [Formula: see text] is the SL(2)-quotient of a smooth rational projective variety. The degree two case [Formula: see text], which is the blow-up of ℙ( Sym 2ℂ2 ⊗ ℂn)//SL(2) along ℙn-1, is worked out as a preliminary example.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Filippo F. Favale ◽  
Sonia Brivio

AbstractLet C be a curve with two smooth components and a single node, and let 𝓤C(w, r, χ) be the moduli space of w-semistable classes of depth one sheaves on C having rank r on both components and Euler characteristic χ. In this paper, under suitable assumptions, we produce a projective bundle over the product of the moduli spaces of semistable vector bundles of rank r on each component and we show that it is birational to an irreducible component of 𝓤C(w, r, χ). Then we prove the rationality of the closed subset containing vector bundles with given fixed determinant.


2014 ◽  
Vol 17 (A) ◽  
pp. 128-147 ◽  
Author(s):  
Reynald Lercier ◽  
Christophe Ritzenthaler ◽  
Florent Rovetta ◽  
Jeroen Sijsling

AbstractWe study new families of curves that are suitable for efficiently parametrizing their moduli spaces. We explicitly construct such families for smooth plane quartics in order to determine unique representatives for the isomorphism classes of smooth plane quartics over finite fields. In this way, we can visualize the distributions of their traces of Frobenius. This leads to new observations on fluctuations with respect to the limiting symmetry imposed by the theory of Katz and Sarnak.


Author(s):  
Naoki Koseki

AbstractIn order to study the wall-crossing formula of Donaldson type invariants on the blown-up plane, Nakajima–Yoshioka constructed a sequence of blow-up/blow-down diagrams connecting the moduli space of torsion free framed sheaves on projective plane, and that on its blow-up. In this paper, we prove that Nakajima–Yoshioka’s diagram realizes the minimal model program. Furthermore, we obtain a fully-faithful embedding between the derived categories of these moduli spaces.


2020 ◽  
Vol 20 (4) ◽  
pp. 507-522
Author(s):  
Mario Maican

AbstractWe study the moduli space of stable sheaves of Euler characteristic 1 supported on curves of arithmetic genus 3 contained in a smooth quadric surface. We show that this moduli space is rational. We compute its Betti numbers by studying the variation of the moduli spaces of α-semi-stable pairs. We classify the stable sheaves using locally free resolutions or extensions. We give a global description: the moduli space is obtained from a certain flag Hilbert scheme by performing two flips followed by a blow-down.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.


Author(s):  
Ulrich Görtz ◽  
Xuhua He ◽  
Michael Rapoport

Abstract We investigate qualitative properties of the underlying scheme of Rapoport–Zink formal moduli spaces of p-divisible groups (resp., shtukas). We single out those cases where the dimension of this underlying scheme is zero (resp., those where the dimension is the maximal possible). The model case for the first alternative is the Lubin–Tate moduli space, and the model case for the second alternative is the Drinfeld moduli space. We exhibit a complete list in both cases.


2020 ◽  
Vol 32 (5) ◽  
pp. 1315-1336
Author(s):  
Gianfranco Casnati ◽  
Ozhan Genc

AbstractWe deal with instanton bundles on the product {\mathbb{P}^{1}\times\mathbb{P}^{2}} and the blow up of {\mathbb{P}^{3}} along a line. We give an explicit construction leading to instanton bundles. Moreover, we also show that they correspond to smooth points of a unique irreducible component of their moduli space.


2020 ◽  
pp. 1-23
Author(s):  
MICHELE BOLOGNESI ◽  
NÉSTOR FERNÁNDEZ VARGAS

Abstract Let C be a hyperelliptic curve of genus $g \geq 3$ . In this paper, we give a new geometric description of the theta map for moduli spaces of rank 2 semistable vector bundles on C with trivial determinant. In order to do this, we describe a fibration of (a birational model of) the moduli space, whose fibers are GIT quotients $(\mathbb {P}^1)^{2g}//\text {PGL(2)}$ . Then, we identify the restriction of the theta map to these GIT quotients with some explicit degree 2 osculating projection. As a corollary of this construction, we obtain a birational inclusion of a fibration in Kummer $(g-1)$ -varieties over $\mathbb {P}^g$ inside the ramification locus of the theta map.


Sign in / Sign up

Export Citation Format

Share Document