EXACT SOLUTIONS OF SOME GENERAL THREE TERM RECURRENCE RELATIONS AND CLOSED SOLUTION OF THE GENERAL FOUR TERM RECURRENCE RELATION

2017 ◽  
Vol 102 (6) ◽  
pp. 1179-1186
Author(s):  
Minji Han ◽  
Eun Ji Jang ◽  
Young Kyu Lee ◽  
Haesom Sung ◽  
Jihun Cha ◽  
...  
1998 ◽  
Vol 29 (3) ◽  
pp. 227-232
Author(s):  
GUANG ZHANG ◽  
SUI-SUN CHENG

Qualitative properties of recurrence relations with coefficients taking on both positive and negative values are difficult to obtain since mathematical tools are scarce. In this note we start from scratch and obtain a number of oscillation criteria for one such relation : $x_{n+1}-x_n+p_nx_{n-r}\le 0$.


2015 ◽  
Vol 11 (1) ◽  
pp. 73-89
Author(s):  
Devendra Kumar

Abstract In this paper we consider general class of distribution. Recurrence relations satisfied by the quotient moments and conditional quotient moments of lower generalized order statistics for a general class of distribution are derived. Further the results are deduced for quotient moments of order statistics and lower records and characterization of this distribution by considering the recurrence relation of conditional expectation for general class of distribution satisfied by the quotient moment of the lower generalized order statistics.


2021 ◽  
Vol 38 (1) ◽  
pp. 149-158
Author(s):  
MIRCEA MERCA ◽  

In 1963, Peter Hagis, Jr. provided a Hardy-Ramanujan-Rademacher-type convergent series that can be used to compute an isolated value of the partition function $Q(n)$ which counts partitions of $n$ into distinct parts. Computing $Q(n)$ by this method requires arithmetic with very high-precision approximate real numbers and it is complicated. In this paper, we investigate new connections between partitions into distinct parts and overpartitions and obtain a surprising recurrence relation for the number of partitions of $n$ into distinct parts. By particularization of this relation, we derive two different linear recurrence relations for the partition function $Q(n)$. One of them involves the thrice square numbers and the other involves the generalized octagonal numbers. The recurrence relation involving the thrice square numbers provide a simple and fast computation of the value of $Q(n)$. This method uses only (large) integer arithmetic and it is simpler to program. Infinite families of linear inequalities involving partitions into distinct parts and overpartitions are introduced in this context.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Young Chel Kuwn ◽  
Zaffar Iqbal ◽  
Abdul Rauf Nizami ◽  
Mobeen Munir ◽  
Sana Riaz ◽  
...  

We find the Hilbert series of the right-angled affine Artin monoid M(D~n∞). We also discuss its recurrence relation and the growth rate.


2020 ◽  
Vol 104 (561) ◽  
pp. 403-411
Author(s):  
Stan Dolan

In 1942 R. C. Lyness challenged readers of the Gazette to find a recurrence relation of order 2 which would generate a cycle of period 7 for almost all initial values [1].


2020 ◽  
Vol 26 (4) ◽  
pp. 164-172
Author(s):  
Kunle Adegoke ◽  
◽  
Adenike Olatinwo ◽  
Winning Oyekanmi ◽  
◽  
...  

Only one three-term recurrence relation, namely, W_{r}=2W_{r-1}-W_{r-4}, is known for the generalized Tribonacci numbers, W_r, r\in Z, defined by W_{r}=W_{r-1}+W_{r-2}+W_{r-3} and W_{-r}=W_{-r+3}-W_{-r+2}-W_{-r+1}, where W_0, W_1 and W_2 are given, arbitrary integers, not all zero. Also, only one four-term addition formula is known for these numbers, which is W_{r + s} = T_{s - 1} W_{r - 1} + (T_{s - 1} + T_{s-2} )W_r + T_s W_{r + 1}, where ({T_r})_{r\in Z} is the Tribonacci sequence, a special case of the generalized Tribonacci sequence, with W_0 = T_0 = 0 and W_1 = W_2 = T_1 = T_2 = 1. In this paper we discover three new three-term recurrence relations and two identities from which a plethora of new addition formulas for the generalized Tribonacci numbers may be discovered. We obtain a simple relation connecting the Tribonacci numbers and the Tribonacci–Lucas numbers. Finally, we derive quadratic and cubic recurrence relations for the generalized Tribonacci numbers.


2021 ◽  
Vol 14 (1) ◽  
pp. 65-81
Author(s):  
Roberto Bagsarsa Corcino ◽  
Jay Ontolan ◽  
Maria Rowena Lobrigas

In this paper, a q-analogue of r-Whitney-Lah numbers, also known as (q,r)-Whitney-Lah number, denoted by $L_{m,r} [n, k]_q$ is defined using the triangular recurrence relation. Several fundamental properties for the q-analogue are established such as vertical and horizontal recurrence relations, horizontal and exponential generating functions. Moreover, an explicit formula for (q, r)-Whitney-Lah number is derived using the concept of q-difference operator, particularly, the q-analogue of Newton’s Interpolation Formula (the umbral version of Taylor series). Furthermore, an explicit formula for the first form (q, r)-Dowling numbers is obtained which is expressed in terms of (q,r)-Whitney-Lah numbers and (q,r)-Whitney numbers of the second kind.


Filomat ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 1757-1765
Author(s):  
Veli Kurt ◽  
Burak Kurt

Mahmudov in ([16], [17], [18]) introduced and investigated some q-extensions of the q-Bernoulli polynomials B(?)n,q (x,y) of order ?, the q-Euler polynomials ?(?)n,q (x,y) of order ? and the q-Genocchi polynomials G(?)n,q (x,y) of order ?. In this article, we give some identities for the q-Bernoulli polynomials, q-Euler polynomials and q-Genocchi polynomials and the recurrence relation between these polynomials. We give a different form of the analogue of the Srivastava-Pint?r addition theorem.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
ChunYuan Wang ◽  
Wuyungaowa

Properties of the generalized hypergeometric series functions are employed to get the recurrence relation for inverse moments and inverse factorial moments of some discrete distributions. Meanwhile, with the existence of the recurrence relations, the accurate value for inverse moment of discrete distributions can thus be obtained.


2007 ◽  
Vol 09 (02) ◽  
pp. 121-133 ◽  
Author(s):  
WILLIAM J. COOK ◽  
HAISHENG LI ◽  
KAILASH C. MISRA

Using certain results for the vertex operator algebras associated with affine Lie algebras, we obtain recurrence relations for the characters of integrable highest weight irreducible modules for an affine Lie algebra. As an application we show that in the simply-laced level 1 case, these recurrence relations give the known characters, whose principal specializations naturally give rise to some multisum Macdonald identities.


Sign in / Sign up

Export Citation Format

Share Document