scholarly journals Potencial de extratos etanólicos de propólis e extratos aquosos de plantas espontâneas no controle de doenças pós-colheita do morango

Author(s):  
Gabriela Silva Moura ◽  
Jonas Marcelo Jaski ◽  
Gilmar Franzener

<p>A cultura do morangueiro é severamente acometida por várias doenças, dentre elas o mofo cinzento, causado por <em>Botrytis cinerea</em> é considerada a doença mais severa na pós-colheita. Visando reduzir o uso de fungicidas sintéticos, vem sendo realizadas pesquisas propondo a utilização de métodos alternativos de controle de patógenos pós-colheita envolvendo a utilização de extratos vegetais, uso de biofungicidas e óleos essenciais. Assim, o presente trabalho teve como objetivo avaliar o potencial de diferentes extratos de própolis e plantas espontâneas no controle de podridão pós-colheita causada pelo fungo <em>B. cinerea</em> em morangos. Para avaliar a atividade antifúngica direta dos extratos etanólico de própolis e extratos aquosos de plantas espontâneas sobre <em>B. cinerea,</em> foi realizado o experimento <em>in vitro</em>, utilizando-se os tratamentos própolis verde 0,5%; própolis verde 2,5%; própolis marrom 0,5%; própolis marrom 2,5%; língua-de-vaca 10%; assa-peixe 10%; rubim 10%; tansagem 10%; testemunha (água). As medições do diâmetro das colônias foram iniciadas 48, 72 e 96 horas após a instalação do experimento. No experimento <em>in vivo </em>os frutos foram imersos nos tratamentos descritos acima. Após cinco dias avaliou-se a incidência e severidade da doença mofo cinzento e das doenças pós-colheita como antracnose e podridão de Rhizopus que apareceram no experimento. Utilizou-se o delineamento experimental inteiramente casualizado (DIC) com quatro e cinco repetições para o ensaio <em>in vitro</em> e <em>in vivo,</em> respectivamente<em>.</em> Os resultados mostram que os extratos etanólicos de própolis verde e marrom a 2,5% apresentaram <em>in vitro</em> e <em>in vivo </em>atividade antifúngica a <em>B. cinerea</em> e <em>Rhizopus nigricans,</em> respectivamente.</p><p align="center"><strong><em>Potential of propolis extracts and extracts etanol spontaneous plants aqueous in control of diseases of strawberry post-harvest</em></strong><strong><em></em></strong></p><p><strong>Abstract</strong><strong>: </strong>The strawberry crop is severely affected by various diseases, including gray mold, caused by <em>Botrytis cinerea</em> is considered the most severe disease in post-harvest fruit. To reduce the use of synthetic fungicides, has been carried out research proposing the use of alternative methods of control postharvest pathogens involving the use of plant extracts, use of biofungicides, essential oils among others. Thus, this study aimed to evaluate the potential of different propolis extracts and wild plants in the control of post-harvest rot caused by the fungus <em>Botrytis cinerea</em> in strawberries. To evaluate the direct antifungal activity of ethanolic extracts of propolis and aqueous extracts of wild plants of B. cinerea, the in vitro experiment was performed, using treatments propolis 0.5%; propolis 2.5%; brown propolis 0.5%; brown propolis 2.5%; control (water + alcohol 2%); cow tongue 10%; assa-fish 10%; rubim 10%; tansagem 10%; control (water). Measurements of the diameter of the colonies were started 48, 72 and 96 hours after installation of the experiment. Conducted the in vivo experiment in which the fruits of strawberry plants were immersed in the treatments described above. After five days we evaluated the incidence and severity of gray mold disease and post-harvest diseases such as anthracnose and Rhizopus rot appearing in the experiment. We used a completely randomized design (CRD) with four and five replicates for the in vitro assay and in vivo, respectively. The results show that ethanol extracts of green and brown propolis 2.5% presented in vitro and in vivo antifungal activity to <em>B. cinerea</em> and <em>Rhizopus nigricans</em> respectively.</p>

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9626
Author(s):  
Huiyu Hou ◽  
Xueying Zhang ◽  
Te Zhao ◽  
Lin Zhou

Background Botrytis cinerea causes serious gray mold disease in many plants. This pathogen has developed resistance to many fungicides. Thus, it has become necessary to look for new safe yet effective compounds against B. cinerea. Methods Essential oils (EOs) from 17 plant species were assayed against B. cinerea, of which Origanum vulgare essential oil (OVEO) showed strong antifungal activity, and accordingly its main components were detected by GC/MS. Further study was conducted on the effects of OVEO, carvacrol and thymol in vitro on mycelium growth and spore germination, mycelium morphology, leakages of cytoplasmic contents, mitochondrial injury and accumulation of reactive oxygen species (ROS) of B. cinerea. The control efficacies of OVEO, carvacrol and thymol on tomato gray mold were evaluated in vivo. Results Of all the 17 plant EOs tested, Cinnamomum cassia, Litsea cubeba var. formosana and O. vulgare EOs had the best inhibitory effect on B. cinerea, with 0.5 mg/mL completely inhibiting the mycelium growth of B. cinerea. Twenty-one different compounds of OVEO were identified by gas chromatography–mass spectrometry, and the main chemical components were carvacrol (89.98%), β-caryophyllene (3.34%), thymol (2.39%), α-humulene (1.38%) and 1-methyl-2-propan-2-ylbenzene isopropyl benzene (1.36%). In vitro experiment showed EC50 values of OVEO, carvacrol and thymol were 140.04, 9.09 and 21.32 μg/mL, respectively. Carvacrol and thymol completely inhibited the spore germination of B. cinerea at the concentration of 300 μg/mL while the inhibition rate of OVEO was 80.03%. EC50 of carvacrol and thymol have significantly (P < 0.05) reduced the fresh and dry weight of mycelia. The collapse and damage on B. cinerea mycelia treated with 40 μg/mL of carvacrol and thymol was examined by scanning electron microscope (SEM). Through extracellular conductivity test and fluorescence microscope observation, it was found that carvacrol and thymol led to increase the permeability of target cells, the destruction of mitochondrial membrane and ROS accumulation. In vivo conditions, 1000 μg/mL carvacrol had the best protective and therapeutic effects on tomato gray mold (77.98% and 28.04%, respectively), and the protective effect was significantly higher than that of 400 μg/mL pyrimethanil (43.15%). While the therapeutic and protective effects of 1,000 μg/mL OVEO and thymol were comparable to chemical control. Conclusions OVEO showed moderate antifungal activity, whereas its main components carvacrol and thymol have great application potential as natural fungicides or lead compounds for commercial fungicides in preventing and controlling plant diseases caused by B. cinerea.


2020 ◽  
Vol 154 ◽  
pp. 112745
Author(s):  
Qiong Yang ◽  
Jiao Wang ◽  
Peng Zhang ◽  
Shengnan Xie ◽  
Xiaolong Yuan ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11242
Author(s):  
Sarunpron Khruengsai ◽  
Patcharee Pripdeevech ◽  
Chutima Tanapichatsakul ◽  
Chanin Srisuwannapa ◽  
Priya Esilda D’Souza ◽  
...  

Fungal endophytes are microorganisms living symbiotically with a host plant. They can produce volatile organic compounds (VOCs) that have antimicrobial activity. This study aimed to isolate endophytic fungi from Barleria prionitis plants grown in Thailand and to investigate the antifungal properties of their VOCs against Colletotrichum acutatum, a causal agent of anthracnose disease on post-harvest strawberry fruits. A total of 34 endophytic fungi were isolated from leaves of B. prionitis. The VOCs produced from each individual isolate were screened for their antifungal activity against C. acutatum using a dual-culture plate method. From this in vitro screening experiment, the VOCs produced by the endophytic isolate BP11 were found to have the highest inhibition percentage (80.3%) against the mycelial growth of C. acutatum. The endophytic isolate BP11 was molecularly identified as Daldinia eschscholtzii MFLUCC 19-0493. This strain was then selected for an in vivo experiment. Results from the in vivo experiment indicated that the VOCs produced by D. eschscholtzii MFLUCC 19-0493 were able to inhibit infections by C. acutatum on organic fresh strawberry fruits with an average inhibition percentage of 72.4%. The quality of the pathogen-inoculated strawberry fruits treated with VOCs produced by D. eschscholtzii MFLUCC 19-0493 was evaluated. Their fruit firmness, total soluble solids, and pH were found to be similar to the untreated strawberry fruits. Solid phase microextraction-gas chromatographic-mass spectrometric analysis of the VOCs produced by D. eschscholtzii MFLUCC 19-0493 led to the detection and identification of 60 compounds. The major compounds were elemicin (23.8%), benzaldehyde dimethyl acetal (8.5%), ethyl sorbate (6.8%), methyl geranate (6.5%), trans-sabinene hydrate (5.4%), and 3,5-dimethyl-4-heptanone (5.1%). Each major compound was tested for its antifungal activity against C. acutatum using the in vitro assay. While all these selected VOCs showed varying degrees of antifungal activity, elemicin was found to possess the strongest antifungal activity. This work suggests that D. eschscholtzii MFLUCC 19-0493 could be a promising natural preservative for controlling C. acutatum associated anthracnose disease in strawberry fruits during the post-harvest period.


2021 ◽  
Vol 48 (3) ◽  
Author(s):  
Hind Lahmyed ◽  
◽  
Rachid Bouharroud ◽  
Redouan Qessaoui ◽  
Abdelhadi Ajerrar ◽  
...  

The present work aims to isolate actinomycete bacteria with antagonistic abilities towards Botrytis cinerea, the causal agent of gray mold, from a soil sample collected from the rhizosphere of a healthy tomato grove. In vitro confrontation led to the isolation of 104 actinomycete isolates; fifteen isolates have shown the most significant mortality rate of the mycelial growth of B. cinerea (>50%). Based on the results of this screening, representative strains were selected to verify their in vivo antagonistic activity on tomato fruits; the reduction of B. cinerea has a percentage ranging from 52.38% to 96.19%. Furthermore, the actinomycete isolates were evaluated for their plant growth-promoting (PGP) properties and their ability to produce biocontrol-related extracellular enzymes viz., amylase, protease, cellulase, chitinase, esterases, and lecithinase. Indeed, Ac70 showed high β-1,3-glucanase activity and siderophore production (17U/ml and 43% respectively), and the highest chitinase activity (39μmol/ml) was observed for Ac24. These results indicated that these actinomycetes might potentially control gray mold caused by B. cinerea on tomato fruits. Investigations on enhancing the efficacy and survival of the biocontrol agent in planta and finding out the best formulation are recommended for future research.


2011 ◽  
Vol 57 (11) ◽  
pp. 896-901 ◽  
Author(s):  
Olfa Kilani-Feki ◽  
Samir Jaoua

Antifungal activity of the Burkholderia cepacia Cs5 was tested in vitro and in vivo for the control of Botrytis cinerea . Bacterial biomass was significantly improved by the amendment of ZnSO4, Mo7(NH4)6O24, and mannitol to the NBY medium; consequently, the amount of the secreted fungicides was increased. The quantification of B. cinerea inhibition, in liquid and solid conditions, showed an important sensitivity of this fungus to the strain Cs5 fungicides. Microscopic monitoring impact of these fungicides on mycelium structure showed an important increase in their diameter and ramifications in the presence of 0.75% supernatant. For the in vivo application of the strain Cs5, Vitis vinifera plantlets were inoculated with a Cs5 bacterial suspension, then with B. cinerea spores. The plantlets protection was total and durable when these two inoculations were made 3 weeks apart, which is the time for the endophytic bacterium to colonize the plantlets up to the top leaves. This protection is due to Cs5 antagonism and the elicitation of the plantlets self-defense via the root overgrowth.


2018 ◽  
Vol 19 (1) ◽  
pp. 45-45
Author(s):  
Dolores Fernández-Ortuño ◽  
Alejandra Vielba-Fernández ◽  
Alejandro Pérez-García ◽  
Juan A. Torés ◽  
Antonio de Vicente

Botrytis cinerea Pers. is an important fungal pathogen responsible for gray mold, one of the most economically important diseases of strawberry (Fragaria × ananassa) worldwide. The primary disease management strategy involves the application of different classes of fungicides, including the sterol biosynthesis inhibitor class III fungicide fenpyrazamine. In 2014 and 2015, strawberries affected with gray mold symptoms were collected from eight locations in Huelva, where fenhexamid had been used extensively. Twenty-five B. cinerea single-spore isolates were examined to determine EC50 values and to determine a discriminatory dose to monitor fenpyrazamine resistance in the field in future studies. The in vitro tests divided the isolates into two groups: 15 sensitive (EC50 from 0.02 to 1.3 μg/ml) and 10 resistant (EC50 from 50.1 to 172.6 μg/ml), which showed cross-resistance with fenhexamid. Performance of fenpyrazamine in in vivo studies was also carried out. Only the fenpyrazamine-resistant isolates developed gray mold on the fungicide-treated fruit. This is the first report of fenpyrazamine resistance in B. cinerea from strawberry fields in Spain and cross-resistance with fenhexamid.


2014 ◽  
Vol 104 (4) ◽  
pp. 347-356 ◽  
Author(s):  
T. Veloukas ◽  
P. Kalogeropoulou ◽  
A. N. Markoglou ◽  
G. S. Karaoglanidis

Respiration inhibitors such as the succinate dehydrogenase inhibitors (SDHIs) and the quinone outside inhibitors (QoIs) are fungicide classes with increasing relevance in gray mold control. However, recent studies have shown that dual resistance to both fungicide classes is a common trait in Botrytis cinerea populations from several hosts throughout the world. Resistance of B. cinerea to SDHIs is associated with several mutations in the sdhB, sdhC, and sdhD genes, while resistance to QoIs, in most cases, is associated with the G143A mutation in the cytb gene. The objective of the current study was to investigate the fitness and the competitive ability of B. cinerea field strains possessing one of the H272Y/R/L, N230I, or P225F sdhB substitutions and the G143A mutation of cytb. Fitness parameters measured were (i) mycelial growth and conidia germination in vitro, (ii) aggressiveness and sporulation capacity in vivo, (iii) sclerotia production in vitro and sclerotia viability under different storage conditions, and (iv) sensitivity to oxidative stress imposed by diquat treatments. The competitive ability of the resistant isolates was measured in the absence and presence of the SDHI fungicides boscalid and fluopyram selection pressure. The measurements of individual fitness components showed that the H272R/G143A isolates had the lower differences compared with the sensitive isolates. In contrast, the groups of H272Y/L/G143A, N230I/G143A, and P225F/G143A isolates showed reduced fitness values compared with the sensitive isolates. Isolates possessing only the cytb G143A substitution did not show any fitness cost. The competition experiments showed that, in the absence of fungicide selection pressure, after four disease cycles on apple fruit, the sensitive isolates dominated in the population in all the mixtures tested. In contrast, when the competition experiment was conducted under the selection pressure of boscalid, a gradual decrease in the frequency of sensitive isolates was observed, whereas the frequency of H272L and P225F isolates was increased. When the competition experiment was conducted in the presence of fluopyram, the sensitive isolates were eliminated even after the first disease cycle and the P225F mutants dominated in the population. Such results suggest that the sdhB mutations may have adverse effects on the mutants. The observed dominance of sensitive isolates in the competition experiments conducted in the absence of fungicides suggest that the application of SDHIs in alternation schemes may delay the selection or reduce the frequency of SDHI-resistant mutants.


Sign in / Sign up

Export Citation Format

Share Document