scholarly journals Microwave and RF non-integral order Hilbert transforms using a 49GHz FSR integrated optical micro-comb source

Author(s):  
mengxi tan ◽  
xingyuan xu ◽  
David Moss

Abstract We report a photonic microwave and RF fractional Hilbert transformer based on an integrated Kerr micro-comb source. The micro-comb source has a free spectral range (FSR) of 50GHz, generating a large number of comb lines that serve as a high-performance multi-wavelength source for the transformer. By programming and shaping the comb lines according to calculated tap weights, we achieve both arbitrary fractional orders and a broad operation bandwidth. We experimentally characterize the RF amplitude and phase response for different fractional orders and perform system demonstrations of real-time fractional Hilbert transforms. We achieve a phase ripple of < 0.15 rad within the 3-dB pass-band, with bandwidths ranging from 5 to 9 octaves, depending on the order. The experimental results show good agreement with theory, confirming the effectiveness of our approach as a new way to implement high-performance fractional Hilbert transformers with broad processing bandwidth, high reconfigurability, and greatly reduced size and complexity.

2020 ◽  
Author(s):  
David Moss

We report a photonic microwave and RF fractional Hilbert transformer based on an integrated Kerr micro-comb source. The micro-comb source has a free spectral range (FSR) of 50GHz, generating a large number of comb lines that serve as a high-performance multi-wavelength source for the transformer. By programming and shaping the comb lines according to calculated tap weights, we achieve both arbitrary fractional orders and a broad operation bandwidth. We experimentally characterize the RF amplitude and phase response for different fractional orders and perform system demonstrations of real-time fractional Hilbert transforms. We achieve a phase ripple of &lt; 0.15 rad within the 3-dB pass-band, with bandwidths ranging from 5 to 9 octaves, depending on the order. The experimental results show good agreement with theory, confirming the effectiveness of our approach as a new way to implement high-performance fractional Hilbert transformers with broad processing bandwidth, high reconfigurability, and greatly reduced size and complexity.


2020 ◽  
Author(s):  
David Moss ◽  
Arnan Mitchell ◽  
Roberto Morandotti ◽  
xingyuan xu

We report a photonic radio frequency (RF) fractional differentiator based on an integrated Kerr micro-comb source. The micro-comb source has a free spectral range (FSR) of 49 GHz, generating a large number of comb lines that serve as a high-performance multi-wavelength source for the differentiator. By programming and shaping the comb lines according to calculated tap weights, arbitrary fractional orders ranging from 0.15 to 0.90 are achieved over a broad RF operation bandwidth of 15.49 GHz. We experimentally characterize the frequency-domain RF amplitude and phase response as well as the temporal response with a Gaussian pulse input. The experimental results show good agreement with theory, confirming the effectiveness of our approach towards high-performance fractional differentiators featuring broad processing bandwidth, high reconfigurability, and potentially reduced sized and cost.


2021 ◽  
Author(s):  
David Moss

Abstract We report a photonic radio frequency (RF) fractional differentiator based on an integrated Kerr micro-comb source. The micro-comb source has a free spectral range (FSR) of 49 GHz, generating a large number of comb lines that serve as a high-performance multi-wavelength source for the differentiator. By programming and shaping the comb lines according to calculated tap weights, arbitrary fractional orders ranging from 0.15 to 0.90 are achieved over a broad RF operation bandwidth of 15.49 GHz. We experimentally characterize the frequency-domain RF amplitude and phase response as well as the temporal response with a Gaussian pulse input. The experimental results show good agreement with theory, confirming the effectiveness of our approach towards high-performance fractional differentiators featuring broad processing bandwidth, high reconfigurability, and potentially reduced sized and cost.


2020 ◽  
Author(s):  
David Moss ◽  
Arnan Mitchell ◽  
Roberto Morandotti ◽  
xingyuan xu

We report a photonic radio frequency (RF) fractional differentiator based on an integrated Kerr micro-comb source. The micro-comb source has a free spectral range (FSR) of 49 GHz, generating a large number of comb lines that serve as a high-performance multi-wavelength source for the differentiator. By programming and shaping the comb lines according to calculated tap weights, arbitrary fractional orders ranging from 0.15 to 0.90 are achieved over a broad RF operation bandwidth of 15.49 GHz. We experimentally characterize the frequency-domain RF amplitude and phase response as well as the temporal response with a Gaussian pulse input. The experimental results show good agreement with theory, confirming the effectiveness of our approach towards high-performance fractional differentiators featuring broad processing bandwidth, high reconfigurability, and potentially reduced sized and cost.


2021 ◽  
Author(s):  
David Moss

Abstract We report a photonic-based radio frequency (RF) arbitrary waveform generator (AWG) using a soliton crystal micro-comb source with a free spectral range (FSR) of 48.9 GHz. The comb source provides over 80 wavelengths, or channels, that we use to successfully achieve arbitrary waveform shapes including square waveforms with a tunable duty ratio ranging from 10–90%, sawtooth waveforms with a tunable slope ratio of 0.2 to 1, and a symmetric concave quadratic chirp waveform with an instantaneous frequency of sub GHz. We achieve good agreement between theory and experiment, validating the effectiveness of this approach towards realizing high-performance, broad bandwidth, nearly user-defined RF waveform generation.


2021 ◽  
Author(s):  
David Moss

Abstract We propose and experimentally demonstrate a microwave photonic intensity differentiator based on a Kerr optical comb generated by a compact integrated micro-ring resonator (MRR). The on-chip Kerr optical comb, containing a large number of comb lines, serves as a high-performance multi-wavelength source for the transversal filter, which will greatly reduce the cost, size, and complexity of the system. Moreover, owing to the compactness of the integrated MRR, up to 200-GHz frequency spacing of the Kerr optical comb can be achieved, enabling a potential operation bandwidth of over 100 GHz. By programming and shaping individual comb lines according to the calculated tap weights, a reconfigurable intensity differentiator with variable differentiation orders can be realized. The operation principle is theoretically analyzed, and experimental demonstrations of first-order, second-order, and third-order differentiation functions based on the principle are presented. The radio frequency (RF) amplitude and phase responses of multi-order intensity differentiations are characterized, and system demonstrations of real-time differentiations for Gaussian input signal are also performed. The experimental results show good agreement with theory, confirming the effectiveness of our approach.


2021 ◽  
Author(s):  
Mengxi Tan ◽  
Xingyuan Xu ◽  
David Moss

Abstract We demonstrate an RF photonic fractional Hilbert transformer based on an integrated Kerr micro-comb source featuring a record low free spectral range of 49 GHz. By programming and shaping the comb lines according to calculated tap weights for up to 39 wavelengths across the C-band, we achieve tunable bandwidths ranging from 1.2 to 15.3 GHz as well as variable center frequencies from baseband to 9.5 GHz, for both standard integral and arbitrary fractional orders. We experimentally characterize the RF amplitude and phase response of the tunable bandpass and lowpass Hilbert transformers with 90 and 45-degree phase shifts. The experimental results show good agreement with theory, confirming the effectiveness of our approach as a powerful way to implement standard and fractional order Hilbert transformers with broad and variable bandwidths and center frequencies, with high reconfigurability and greatly reduced size and complexity.


2021 ◽  
Author(s):  
David Moss

Abstract We demonstrate a photonic radio frequency (RF) transversal filter based on an integrated optical micro-comb source featuring a record low free spectral range of 49 GHz yielding 80 micro-comb lines across the C-band. This record-high number of taps, or wavelengths for the transversal filter results in significantly increased performance including a QRF factor more than four times higher than previous results. Further, by employing both positive and negative taps, an improved out-of-band rejection of up to 48.9 dB is demonstrated using Gaussian apodization, together with a tunable centre frequency covering the RF spectra range, with a widely tunable 3-dB bandwidth and versatile dynamically adjustable filter shapes. Our experimental results match well with theory, showing that our transversal filter is a competitive solution to implement advanced adaptive RF filters with broad operational bandwidths, high frequency selectivity, high reconfigurability, and potentially reduced cost and footprint. This approach is promising for applications in modern radar and communications systems.


2021 ◽  
Author(s):  
David Moss

<p>We demonstrate an RF photonic fractional Hilbert transformer based on an integrated Kerr micro-comb source featuring a record low free spectral range of 49 GHz. By programming and shaping the comb lines according to calculated tap weights for up to 39 wavelengths across the C-band, we achieve tunable bandwidths ranging from 1.2 to 15.3 GHz as well as variable center frequencies from baseband to 9.5 GHz, for both standard integral and arbitrary fractional orders. We experimentally characterize the RF amplitude and phase response of the tunable bandpass and lowpass Hilbert transformers with 90 and 45-degree phase shifts. The experimental results show good agreement with theory, confirming the effectiveness of our approach as a powerful way to implement standard and fractional order Hilbert transformers with broad and variable bandwidths and center frequencies, with high reconfigurability and greatly reduced size and complexity.</p>


2021 ◽  
Author(s):  
David Moss

We demonstrate an RF photonic fractional Hilbert transformer based on an integrated Kerr micro-comb source featuring a record low free spectral range of 49 GHz. By programming and shaping the comb lines according to calculated tap weights for up to 39 wavelengths across the C-band, we achieve tunable bandwidths ranging from 1.2 to 15.3 GHz as well as variable center frequencies from baseband to 9.5 GHz, for both standard integral and arbitrary fractional orders. We experimentally characterize the RF amplitude and phase response of the tunable bandpass and lowpass Hilbert transformers with 90 and 45-degree phase shifts. The experimental results show good agreement with theory, confirming the effectiveness of our approach as a powerful way to implement standard and fractional order Hilbert transformers with broad and variable bandwidths and center frequencies, with high reconfigurability and greatly reduced size and complexity.


Sign in / Sign up

Export Citation Format

Share Document