scholarly journals Corpus Asher-Greve. Dealing with "Data form the Past"

Author(s):  
Nicole Gäumann

SNF-Project (1.722-0.83): Naturwissenschaftliche und typologische Untersuchungen an Rollsiegeln. When?         1983-1986 Who?           Dr. Julia Asher-Greve and Prof. Dr. Willem Stern, University of Basel Material?     1017 cylinder seals from Mesopotamia and neighbouring regions covering all periods from Uruk to Achaemenid period. What? XRD (X-ray diffraction) -> mineralogical composition EDXRF (energy dispersive X-ray fluorescence) -> chemical composition Iconographical typology Project couldn’t be brought to an end, data not interpreted   PhD-Project based on the corpus and analyses of the project Asher-Greve When?         2017-2020 (?) Who?           Nicole Gäumann Material?     Same What? Interpretation of XRD- and EDXRF from previous project Further analyses on existing powder samples (?) Typology Bringing together the results of the material analyses and the archaeological data, the material ought to be interpreted in terms of connections between material, colour, dating, provenance, theme, owner…  

Elkawnie ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 302
Author(s):  
Muttaqin Hasan ◽  
Teuku Budi Aulia ◽  
Fido Yurnalis

Abstract: Inong Balee Fort is one of the Islamic Kingdom of Aceh heritage built in 1599 by Admiral Malahayati but several parts of the fortress wall have currently been damaged and the stone removed. Indonesian Government plans to restore the fort and this makes it necessary to examine the characteristics of the fortress mortar with a focus on the chemical composition and mineralogical elements. Therefore, mortar powder samples obtained from the fort walls were tested through X-Ray Diffraction (XRD) and the results showed the main composition of mortar is CaCO3 and SiO2 from a mixture of lime and sand while the others are P2O5, MgCO3, and Al2O3. Meanwhile, two mortar mixtures including 1 lime: 2 sand and 1 cement: 2 lime: 3 sand were designed for restoration purposes and they were both found by the XRD analysis results to have a diffraction pattern similar to Inong Balee Fort mortar. However, mortar with 1 lime: 2 sand has a very low compressive strength subsequently it does not meet the specifications of the SNI 6882:2014 and ASTM C270-19a while mortar with 1 cement: 2 lime: 3 sand has a compressive strength that meets the specifications. Therefore, a mortar with 1 cement: 2 lime: 3 sand is recommended to be used for the restoration of Inong Balee Fort.Abstrak: Benteng Inong Balee merupakan salah satu peninggalan Kerajaan Islam Aceh yang dibangun pada tahun 1599 oleh Laksamana Malahayati. Saat ini banyak bagian dinding pasangan batu benteng tersebut sudah rusak dan batunya sudah terlepas dari ikatan mortar. Pemerintah Republik Indonesia berencana melakukan restorasi benteng tersebut. Oleh karena itu perlu diteliti karakteristik mortar pengikat dari pasangan batu benteng tersebut, berupa kandungan senyawa kimia dan mineralnya. Metode yang digunakan untuk karakterisasi adalah dengan melakukan pengujian X-Ray Diffraction (XRD) terhadap bubuk sampel mortar yang diambil dari dinding benteng. Hasil pengujian menunjukkan bahwa komposisi utama mortar pengikatnya adalah CaCO3 dan SiO2 yang menunjukkan bahwa mortar tersebut terbuat dari campuran kapur dan pasir. Disamping itu juga terdapat kandungan senyawa P2O5, MgCO3 dan Al2O3. Selanjutnya untuk keperluan restorasi didesain 2 campuran mortar, yaitu mortar dengan campuran 1 kapur : 2 pasir dan mortar dengan campuran 1 semen : 2 kapur : 3 pasir. Hasil analisis XRD menunjukkan bahwa kedua campuran tersebut mempunyai pola diffraksi yang mirip dengan Benteng Inong Balee. Akan tetapi mortar dengan campuran 1 kapur : 2 pasir mempunyai kuat tekan yang sangat rendah sehingga tidak memenuhi spesifikasi Standar SNI 6882:2014 dan ASTM C270-19a, sedangkan mortar dengan campuran 1 semen : 2 kapur : 3 pasir mempunyai kuat tekan yang memenuhi spesifikasi Standar SNI 6882:2014 dan ASTM C270-19a, sehingga mortar ini disarankan digunakan untuk keperluan restorasi Benteng Inong Balee.


2010 ◽  
Vol 154-155 ◽  
pp. 1393-1396 ◽  
Author(s):  
Xin Min Fan ◽  
Jie Wen Huang ◽  
Qun Yang ◽  
Jun Jie Gan

A carbontirided layer was produced on 20CrMnTi steel by plasma electrolytic carbonitriding (PEC/N). Scanning electron microscopy with an energy dispersive X-ray analysis was employed to study the morphology and chemical composition of the carbonitrided layer. Hardness of the layer was measured using a microhardness tester, and the phase structure was determined by X-ray diffraction. The results show that a compact carbonitrided layer can be obtained on the surface of 20CrMnTi steel. The thickness of the layer increases with carbontriding time. When the sample was treated at 120V for 20min, the thickness is 45μm and the highest microhardness is 766HV0.05. The carbontrided layers are composed of Fe3C, Fe5C2, ε-Fe3N and α-Fe.


1996 ◽  
Vol 11 (6) ◽  
pp. 1367-1372 ◽  
Author(s):  
J.C.L. Chow ◽  
P.C.W. Fung ◽  
H.M. Shao ◽  
C.C. Lam

Pb-substituted Hg-based superconductor of Hg0.66Pb0.33Ba2Ca2Cu3Oy has been fabricated using the sealed quartz tube technique. R- and x-ray diffraction pattern (XDP) measurements show that the specimen has a Tc of 135 K and contains mainly the Hg-1223 phase. Scanning electron microscopy/energy dispersive x-ray analysis (SEM/EDX) and transmission electron microscopy/energy dispersive x-ray analysis (TEM/EDX) were employed to study the texture and chemical composition of the specimen. It is found that the specimen contains round-shaped grains with a mixture of Hg-1223, BaCuO2, and Ca0.85CuO2 phases, square-shaped grains with a formula of PbBa2O3, small single crystals with single Hg-1223 phase, and crystal-like layers with a mixture of Hg-1223 and BaCuO2 phase. We consider that though the doping of Pb can benefit the stabilization of the Hg-1223 phase, it introduces other impurity phases and textures in the specimen at the same time.


Clay Minerals ◽  
2001 ◽  
Vol 36 (1) ◽  
pp. 29-47 ◽  
Author(s):  
A. Sandler ◽  
Y. Nathan ◽  
Y. Eshet ◽  
M. Raab

AbstractThe diagenetic evolution of clay minerals in a 4249 m sedimentary-magmatic sequence of the Zemah-1 drillhole in the Dead Sea Rift, Israel, was studied, mainly by X-ray diffraction (XRD). The parallel maturation of the organic matter was estimated by the thermal alteration index (TAI) method. Both parameters follow a progressive diagenesis with depth. The original clays, now encountered only at shallow depths, were dioctahedral, and mostly detrital. They transformed into Mg-rich trioctahedral clays starting with a saponite-dominated assemblage, followed by a saponite, ordered chlorite-smectite (C-S), and chlorite assemblage, and finally by a saponite, corrensite, chlorite and talc assemblage. Significant mineralogical composition gaps occur between saponite to corrensite and corrensite to chlorite. Short-range variations within the most evolved assemblage are controlled by bulk-rock composition. Depths of first occurrence and disappearance of minerals indicate a much higher geothermal gradient in the past whereas the TAI values suggest an even higher palaeogradient of ∼708C km–1.


2010 ◽  
Vol 156-157 ◽  
pp. 1006-1009
Author(s):  
Yong Ping Pu ◽  
Ning Xu ◽  
Xiao Long Chen

Quantitative analysis of tetragonal phase in barium titanate powders and fundament of standard curve was discussed from the result of X-ray diffraction (XRD) experiment via testing the standard series prepared powder samples. Some different conclusions compared with the past researches were drawn by analyzing the XRD data including the integrated intensity of a certain diffraction peak, difference in 2θ between peak (002) and (200) △2θ and d (interplanar spacing) value. Thus a useful method was provided for quantitative analysis tetragonal phase in barium titanate powders by synthesized by hydrothermal method.


2006 ◽  
Vol 14 (3) ◽  
Author(s):  
K. Kołodziejak ◽  
S. Turczyński ◽  
R. Diduszko ◽  
L. Klimek ◽  
D. Pawlak

AbstractEutectics are the materials with foreseen application in the field of photonic crystals and metamaterials. In this paper, the dependence on chemical composition of the microstructures of terbium-scandium-aluminium gamet and terbium-scandium perovskite (Tb3Sc2Al3O12-TbScO3) eutectics has been studied. The growth of the eutectic rods by the micro-pulling down method is presented, using compositions with several different volume fractions of the garnet and the perovskite phases, VTSAG:VTSP = 4, 3, 2, 1, 1/2. The phases have been characterized by powder X-ray diffraction and energy dispersive spectrometry. The relationship between the lattice constant of individual phases and the chemical composition is presented. The unidirectional growth of microrods has been also investigated by electron backscattering diffraction.


2003 ◽  
Vol 07 (08) ◽  
pp. 579-584 ◽  
Author(s):  
Roberto Matassa ◽  
Elena Cervone ◽  
Claudia Sadun

A metal complex of general formula Cr (II)- C 26 H 14 N 8 has been obtained as an amorphous compound and studied by means of IR and Energy Dispersive X-ray Diffraction (EDXD). The chemical composition and the IR signals of the sample suggest that the hemiporphyrazine is bound to the metal atom via nitrogen atoms. EDXD data confirm this finding and show that the compound structure is composed of two parallel stacks of seven planar macro-molecules. The second stack is rotated by 5° around the z axis originating in its center of mass and the molecules are lying on parallel planes to xy plane.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
E. Loren Buhle ◽  
Pamela Rew ◽  
Ueli Aebi

While DNA-dependent RNA polymerase represents one of the key enzymes involved in transcription and ultimately in gene expression in procaryotic and eucaryotic cells, little progress has been made towards elucidation of its 3-D structure at the molecular level over the past few years. This is mainly because to date no 3-D crystals suitable for X-ray diffraction analysis have been obtained with this rather large (MW ~500 kd) multi-subunit (α2ββ'ζ). As an alternative, we have been trying to form ordered arrays of RNA polymerase from E. coli suitable for structural analysis in the electron microscope combined with image processing. Here we report about helical polymers induced from holoenzyme (α2ββ'ζ) at low ionic strength with 5-7 mM MnCl2 (see Fig. 1a). The presence of the ζ-subunit (MW 86 kd) is required to form these polymers, since the core enzyme (α2ββ') does fail to assemble into such structures under these conditions.


2018 ◽  
Vol 21 (7) ◽  
pp. 495-500 ◽  
Author(s):  
Hassan A. Almarshad ◽  
Sayed M. Badawy ◽  
Abdalkarem F. Alsharari

Aim and Objective: Formation of the gallbladder stones is a common disease and a major health problem. The present study aimed to identify the structures of the most common types of gallbladder stones using X-ray spectroscopic techniques, which provide information about the process of stone formation. Material and Method: Phase and elemental compositions of pure cholesterol and mixed gallstones removed from gallbladders of patients were studied using energy-dispersive X-ray spectroscopy combined with scanning electron microscopy analysis and X-ray diffraction. Results: The crystal structures of gallstones which coincide with standard patterns were confirmed by X-ray diffraction. Plate-like cholesterol crystals with laminar shaped and thin layered structures were clearly observed for gallstone of pure cholesterol by scanning electron microscopy; it also revealed different morphologies from mixed cholesterol stones. Elemental analysis of pure cholesterol and mixed gallstones using energy-dispersive X-ray spectroscopy confirmed the different formation processes of the different types of gallstones. Conclusion: The method of fast and reliable X-ray spectroscopic techniques has numerous advantages over the traditional chemical analysis and other analytical techniques. The results also revealed that the X-ray spectroscopy technique is a promising technique that can aid in understanding the pathogenesis of gallstone disease.


Sign in / Sign up

Export Citation Format

Share Document