scholarly journals A system-on-chip 1.5 GHz phase locked loop realized using 40 nm CMOS technology

2018 ◽  
Vol 31 (1) ◽  
pp. 101-113
Author(s):  
Weiyin Wang ◽  
Xiangjie Chen ◽  
Hei Wong

This work presents the design and realization of a fully-integrated 1.5 GHz sigma-delta fractional-N ring-based PLL for system-on-chip (SoC) applications. Some design optimizations were conducted to improve the performance of each functional block such as phase frequency detector (PFD), voltage-controlled oscillator (VCO), filter and charge pump (CP) and so as for the whole system. In particular, a time delay circuit is designed for overcoming the blind zone in the PFD; an operational amplifier-feedback structure was used to eliminate the current mismatch in the CP, a 3rd LPF is used for suppressing noises and a current overdrive structure is used in VCO design. The design was realized with a commercial 40 nm CMOS process. The core die sized about 0.041 mm2. Measurement results indicated that the circuit functions well for the locked range between 500 MHz to 1.5 GHz.

Author(s):  
C. Gamauf ◽  
M. Siegele ◽  
A. Nemecek ◽  
G. C. Mutinati ◽  
S. Steinhauer ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 68
Author(s):  
Woorham Bae ◽  
Sung-Yong Cho ◽  
Deog-Kyoon Jeong

This paper presents a fully integrated Peripheral Component Interconnect (PCI) Express (PCIe) Gen4 physical layer (PHY) transmitter. The prototype chip is fabricated in a 28 nm low-power CMOS process, and the active area of the proposed transmitter is 0.23 mm2. To enable voltage scaling across wide operating rates from 2.5 Gb/s to 16 Gb/s, two on-chip supply regulators are included in the transmitter. At the same time, the regulators maintain the output impedance of the transmitter to meet the return loss specification of the PCIe, by including replica segments of the output driver and reference resistance in the regulator loop. A three-tap finite-impulse-response (FIR) equalization is implemented and, therefore, the transmitter provides more than 9.5 dB equalization which is required in the PCIe specification. At 16 Gb/s, the prototype chip achieves energy efficiency of 1.93 pJ/bit including all the interface, bias, and built-in self-test circuits.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1873
Author(s):  
Chen Cai ◽  
Xuqiang Zheng ◽  
Yong Chen ◽  
Danyu Wu ◽  
Jian Luan ◽  
...  

This paper presents a fully integrated physical layer (PHY) transmitter (TX) suiting for multiple industrial protocols and compatible with different protocol versions. Targeting a wide operating range, the LC-based phase-locked loop (PLL) with a dual voltage-controlled oscillator (VCO) was integrated to provide the low jitter clock. Each lane with a configurable serialization scheme was adapted to adjust the data rate flexibly. To achieve high-speed data transmission, several bandwidth-extended techniques were introduced, and an optimized output driver with a 3-tap feed-forward equalizer (FFE) was proposed to accomplish high-quality data transmission and equalization. The TX prototype was fabricated in a 28-nm CMOS process, and a single-lane TX only occupied an active area of 0.048 mm2. The shared PLL and clock distribution circuits occupied an area of 0.54 mm2. The proposed PLL can support a tuning range that covers 6.2 to 16 GHz. Each lane's data rate ranged from 1.55 to 32 Gb/s, and the energy efficiency is 1.89 pJ/bit/lane at a 32-Gb/s data rate and can tune an equalization up to 10 dB.


2012 ◽  
Author(s):  
Martin Popp ◽  
Beat De Coi ◽  
Markus Thalmann ◽  
Radoslav Gancarz ◽  
Pascal Ferrat ◽  
...  

2019 ◽  
Vol 29 (08) ◽  
pp. 2050130 ◽  
Author(s):  
Jagdeep Kaur Sahani ◽  
Anil Singh ◽  
Alpana Agarwal

A fast phase frequency detector (PFD) and low gain low phase noise voltage-controlled oscillator (VCO)-based phase-locked loop (PLL) design are presented in this paper. PLL works in the frequency range of 0.025–1.6[Formula: see text]GHz, targeting various SoC applications. The proposed PFD, designed using CMOS dynamic logic, is fast and improves the locking time, dead zone and blind zone in the PLL. The standard CMOS inverter gate-based pseudo differential VCO is used in the PLL. Also, CMOS inverter is used as variable capacitor to tune the frequency of VCO with control voltage. The proposed PLL is designed in a 180[Formula: see text]nm CMOS process with supply voltage of 1.8[Formula: see text]V. The phase noise of VCO is [Formula: see text][Formula: see text]dBc/Hz at an offset frequency of 100[Formula: see text]MHz. The reference clock of 25[Formula: see text]MHz synthesizes the output clock of 1.6[Formula: see text]GHz with rms jitter of 0.642[Formula: see text]ps.


2013 ◽  
Vol 534 ◽  
pp. 197-205
Author(s):  
Kiichi Niitsu ◽  
Masato Sakurai ◽  
Naohiro Harigai ◽  
Daiki Hirabayashi ◽  
Daiki Oki ◽  
...  

This work presents the analytical study on jitter accumulation in interleaved phase frequency detectors for high-accuracy on-chip jitter measurements. Jitter accumulation in phase frequency detector degrades the accuracy of on-chip jitter measurements, and required to be mitigated. In order to analyze and estimate the jitter accumulation in phase frequency detectors, SPICE simulation was performed with 65 nm CMOS technology. Simulation results show that, with a 50 mV power supply noise injection, jitter accumulation can be reduced from 1.03 ps to 0.49 ps (52% reduction) by using an interleaved architecture.


Sign in / Sign up

Export Citation Format

Share Document