scholarly journals Topological Quantum Computing and 3-Manifolds

2021 ◽  
Vol 3 (1) ◽  
pp. 153-165
Author(s):  
Torsten Asselmeyer-Maluga

In this paper, we will present some ideas to use 3D topology for quantum computing. Topological quantum computing in the usual sense works with an encoding of information as knotted quantum states of topological phases of matter, thus being locked into topology to prevent decay. Today, the basic structure is a 2D system to realize anyons with braiding operations. From the topological point of view, we have to deal with surface topology. However, usual materials are 3D objects. Possible topologies for these objects can be more complex than surfaces. From the topological point of view, Thurston’s geometrization theorem gives the main description of 3-dimensional manifolds. Here, complements of knots do play a prominent role and are in principle the main parts to understand 3-manifold topology. For that purpose, we will construct a quantum system on the complements of a knot in the 3-sphere. The whole system depends strongly on the topology of this complement, which is determined by non-contractible, closed curves. Every curve gives a contribution to the quantum states by a phase (Berry phase). Therefore, the quantum states can be manipulated by using the knot group (fundamental group of the knot complement). The universality of these operations was already showed by M. Planat et al.

Author(s):  
Torsten Asselmeyer-Maluga

In this paper, we will present some ideas to use 3D topology for quantum computing extending ideas from a previous paper. Topological quantum computing used “knotted” quantum states of topological phases of matter, called anyons. But anyons are connected with surface topology. But surfaces have (usually) abelian fundamental groups and therefore one needs non-Abelian anyons to use it for quantum computing. But usual materials are 3D objects which can admit more complicated topologies. Here, complements of knots do play a prominent role and are in principle the main parts to understand 3-manifold topology. For that purpose, we will construct a quantum system on the complements of a knot in the 3-sphere (see T. Asselmeyer-Maluga, Quantum Rep. 3 (2021) 153, arXiv:2102.04452 for previous work). The whole system is designed as knotted superconductor, where every crossing is a Josephson junction and the qubit is realized as flux qubit. We discuss the properties of this systems in particular the fluxion quantization by using the A-polynomial of the knot. Furthermore, we showed that 2-qubit operations can be realized by linked (knotted) superconductors again coupled via a Josephson junction.


SPIN ◽  
2011 ◽  
Vol 01 (01) ◽  
pp. 33-44 ◽  
Author(s):  
SHUN-QING SHEN ◽  
WEN-YU SHAN ◽  
HAI-ZHOU LU

We present a general description of topological insulators from the point of view of Dirac equations. The Z2 index for the Dirac equation is always zero, and thus the Dirac equation is topologically trivial. After the quadratic term in momentum is introduced to correct the mass term m or the band gap of the Dirac equation, i.e., m → m − Bp2, the Z2 index is modified as 1 for mB > 0 and 0 for mB < 0. For a fixed B there exists a topological quantum phase transition from a topologically trivial system to a nontrivial system when the sign of mass m changes. A series of solutions near the boundary in the modified Dirac equation is obtained, which is characteristic of topological insulator. From the solutions of the bound states and the Z2 index we establish a relation between the Dirac equation and topological insulators.


Science ◽  
2013 ◽  
Vol 340 (6137) ◽  
pp. 1205-1208 ◽  
Author(s):  
Michael Walter ◽  
Brent Doran ◽  
David Gross ◽  
Matthias Christandl

Entangled many-body states are an essential resource for quantum computing and interferometry. Determining the type of entanglement present in a system usually requires access to an exponential number of parameters. We show that in the case of pure, multiparticle quantum states, features of the global entanglement can already be extracted from local information alone. This is achieved by associating any given class of entanglement with an entanglement polytope—a geometric object that characterizes the single-particle states compatible with that class. Our results, applicable to systems of arbitrary size and statistics, give rise to local witnesses for global pure-state entanglement and can be generalized to states affected by low levels of noise.


Author(s):  
Raffaele Di Gregorio ◽  
Alessandro Cammarata ◽  
Rosario Sinatra

The comparison of mechanisms with different topology or with different geometry, but with the same topology, is a necessary operation during the design of a machine sized for a given task. Therefore, tools that evaluate the dynamic performances of a mechanism are welcomed. This paper deals with the dynamic isotropy of 2-dof mechanisms starting from the definition introduced in a previous paper. In particular, starting from the condition that identifies the dynamically isotropic configurations, it shows that, provided some special cases are not considered, 2-dof mechanisms have at most a finite number of isotropic configurations. Moreover, it shows that, provided the dynamically isotropic configurations are excluded, the geometric locus of the configuration space that collects the points associated to configurations with the same dynamic isotropy is constituted by closed curves. This results will allow the classification of 2-dof mechanisms from the dynamic-isotropy point of view, and the definition of some methodologies for the characterization of the dynamic isotropy of these mechanisms. Finally, examples of applications of the obtained results will be given.


10.29007/4dr3 ◽  
2020 ◽  
Author(s):  
Andreas Blass ◽  
Yuri Gurevich

In mathematical applications, category theory remains a contentious issue, with enthusiastic fans and a skepticalmajority. In a muted form this split applies to the authors ofthis note. When we learned that the only mathematically soundfoundation of topological quantum computing in the literature isbased on category theory, the skeptical author suggested to "decategorize" the foundation. But we discovered, to our surprise, thatcategory theory (or something like it) is necessary for the purpose,for computational reasons. The goal of this note is to give a high-level explanation of that necessity, which avoids details and whichsuggests that the case of topological quantum computing is farfrom unique.


2021 ◽  
Vol 2 (1) ◽  
pp. 01-27
Author(s):  
Michael Tomasello

For obvious and very good reasons the study of human communication is dominated by the study of language. But from a psychological point of view, the basic structure of human communication – how it works pragmatically in terms of the intentions and inferences involved - is totally independent of language. The most important data here are acts of human communication that do not employ conventions. In situations in which language is for some reason not an option, people often produce spontaneous, non-conventionalized gestures, including most prominently pointing (deictic gestures) and pantomiming (iconic gestures). These gestures are universal among humans and unique to the species, and in human evolution they almost certainly preceded conventional communication, either signed or vocal. For prelinguistic infants to communicate effectively via pointing and pantomiming, they must already possess species-unique and very powerful skills and motivations for shared intentionality as pragmatic infrastructure. Conventional communication is then built on top of this infrastructure - or so I will argue.


2019 ◽  
Vol 198 ◽  
pp. 00014
Author(s):  
Torsten Asselmeyer-Maluga

In this paper, we will discuss a formal link between neural networks and quantum computing. For that purpose we will present a simple model for the description of the neural network by forming sub-graphs of the whole network with the same or a similar state. We will describe the interaction between these areas by closed loops, the feedback loops. The change of the graph is given by the deformations of the loops. This fact can be mathematically formalized by the fundamental group of the graph. Furthermore the neuron has two basic states |0〉 (ground state) and |1〉 (excited state). The whole state of an area of neurons is the linear combination of the two basic state with complex coefficients representing the signals (with 3 Parameters: amplitude, frequency and phase) along the neurons. If something changed in this area, we need a transformation which will preserve this general form of a state (mathematically, this transformation must be an element of the group S L(2; C)). The same argumentation must be true for the feedback loops, i.e. a general transformation of states along the feedback loops is an assignment of this loop to an element of the transformation group. Then it can be shown that the set of all signals forms a manifold (character variety) and all properties of the network must be encoded in this manifold. In the paper, we will discuss how to interpret learning and intuition in this model. Using the Morgan-Shalen compactification, the limit for signals with large amplitude can be analyzed by using quasi-Fuchsian groups as represented by dessins d’enfants (graphs to analyze Riemannian surfaces). As shown by Planat and collaborators, these dessins d’enfants are a direct bridge to (topological) quantum computing with permutation groups. The normalization of the signal reduces to the group S U(2) and the whole model to a quantum network. Then we have a direct connection to quantum circuits. This network can be transformed into operations on tensor networks. Formally we will obtain a link between machine learning and Quantum computing.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Anwei Zhang ◽  
Luojia Wang ◽  
Xianfeng Chen ◽  
Vladislav V. Yakovlev ◽  
Luqi Yuan

AbstractEfficient manipulation of quantum states is a key step towards applications in quantum information, quantum metrology, and nonlinear optics. Recently, atomic arrays have been shown to be a promising system for exploring topological quantum optics and robust control of quantum states, where the inherent nonlinearity is included through long-range hoppings. Here we show that a one-dimensional atomic array in a periodic magnetic field exhibits characteristic properties associated with an effective two-dimensional Hofstadter-butterfly-like model. Our work points out super- and sub-radiant topological edge states localized at the boundaries of the atomic array despite featuring long-range interactions, and opens an avenue of exploring an interacting quantum optical platform with synthetic dimensions.


Sign in / Sign up

Export Citation Format

Share Document