Innovative elastomeric shear leg mount concepts for quasi-zero stiffness isolation

2021 ◽  
Vol 263 (4) ◽  
pp. 2609-2616
Author(s):  
Luke Fredette ◽  
Rajendra Singh

Passive vibration isolation may be a cost-effective solution to isolate a supported system containing a source and/or receiver from the supporting structure. The standard linear theory suggests a low-stiffness joint to create a mobility mismatch in the transmission path, but this solution may lead to large amplitude motions in the supported system. To achieve both motion control and isolation with the same mount and without compromising either objective, an innovative, nonlinear mount concept is proposed. Taking advantage of geometric nonlinearity for large displacements, a quasi-zero stiffness is generated by exploiting the interaction between the nonlinear mechanisms that govern the motion of a number of inclined shear legs. For example, a three-regime stiffness profile is created, including a medium-stiffness preload regime, a quasi-zero stiffness isolation regime, and a high-stiffness motion control regime. This concept offers significant benefits compared with a more conventional compromise approach in that low-amplitude vibrations are exceptionally isolated while large amplitude transient motions are controlled. Illustrative computational examples will be presented to support the underlying linear and nonlinear design principles. Limiting cases will be discussed as well.

1996 ◽  
Author(s):  
Jeanne Sullivan ◽  
James Gooding ◽  
Michelle Idle ◽  
Alok Das ◽  
Terance Hoffman ◽  
...  

2021 ◽  
Vol 11 (10) ◽  
pp. 4526
Author(s):  
Lihua Wu ◽  
Yu Huang ◽  
Dequan Li

Tilt vibrations inevitably have negative effects on some precise engineering even after applying horizontal and vertical vibration isolations. It is difficult to adopt a traditional passive vibration isolation (PVI) scheme to realize tilt vibration isolation. In this paper, we present and develop a tilt active vibration isolation (AVI) device using a vertical pendulum (VP) tiltmeter and a piezoelectric transducer (PZT). The potential resolution of the VP is dependent on the mechanical thermal noise in the frequency bandwidth of about 0.0265 nrad, which need not be considered because it is far below the ground tilt of the laboratory. The tilt sensitivity of the device in an open-loop mode, investigated experimentally using a voltage controller, is found to be (1.63±0.11)×105 V/rad. To compensate for the hysteresis nonlinearity of the PZT, we experimentally established the multi-loop mathematical model of hysteresis, and designed a parallel controller consisting of both a hysteresis inverse model predictor and a digital proportional–integral–differential (PID) adjuster. Finally, the response of the device working in close-loop mode to the tilt vibration was tested experimentally, and the tilt AVI device showed a good vibration isolation performance, which can remarkably reduce the tilt vibration, for example, from 6.0131 μrad to below 0.0103 μrad.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ha Vinh Lam Nguyen ◽  
Isabelle Kleiner

AbstractA large variety of molecules contain large amplitude motions (LAMs), inter alia internal rotation and inversion tunneling, resulting in tunneling splittings in their rotational spectrum. We will present the modern strategy to study LAMs using a combination of molecular jet Fourier transform microwave spectroscopy, spectral modeling, and quantum chemical calculations to characterize such systems by the analysis of their rotational spectra. This interplay is particularly successful in decoding complex spectra revealing LAMs and providing reference data for fundamental physics, astrochemistry, atmospheric/environmental chemistry and analytics, or fundamental researches in physical chemistry. Addressing experimental key aspects, a brief presentation on the two most popular types of state-of-the-art Fourier transform microwave spectrometer technology, i.e., pulsed supersonic jet expansion–based spectrometers employing narrow-band pulse or broad-band chirp excitation, will be given first. Secondly, the use of quantum chemistry as a supporting tool for rotational spectroscopy will be discussed with emphasis on conformational analysis. Several computer codes for fitting rotational spectra exhibiting fine structure arising from LAMs are discussed with their advantages and drawbacks. Furthermore, a number of examples will provide an overview on the wealth of information that can be drawn from the rotational spectra, leading to new insights into the molecular structure and dynamics. The focus will be on the interpretation of potential barriers and how LAMs can act as sensors within molecules to help us understand the molecular behavior in the laboratory and nature.


2020 ◽  
Vol 500 (1) ◽  
pp. 548-557
Author(s):  
M Lisogorskyi ◽  
H R A Jones ◽  
F Feng ◽  
R P Butler ◽  
S Vogt

ABSTRACT We examine the influence of activity- and telluric-induced radial velocity (RV) signals on high-resolution spectra taken with an iodine absorption cell. We exclude 2-$\mathring{\rm A}$ spectral chunks containing active and telluric lines based on the well-characterized K1V star α Centauri B and illustrate the method on Epsilon Eridani – an active K2V star with a long-period, low-amplitude planetary signal. After removal of the activity- and telluric-sensitive parts of the spectrum from the RV calculation, the significance of the planetary signal is increased and the stellar rotation signal disappears. In order to assess the robustness of the procedure, we perform Monte Carlo simulations based on removing random chunks of the spectrum. Simulations confirm that the removal of lines impacted by activity and tellurics provides a method for checking the robustness of a given Keplerian signal. We also test the approach on HD 40979, which is an active F8V star with a large-amplitude planetary signal. Our Monte Carlo simulations reveal that the significance of the Keplerian signal in the F star is much more sensitive to wavelength. Unlike the K star, the removal of active lines from the F star greatly reduces the RV precision. In this case, our removal of a K star active line from an F star does not a provide a simple useful diagnostic because it has far less RV information and heavily relies on the strong active lines.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 583
Author(s):  
Wenbin Gong ◽  
An Li ◽  
Chunfu Huang ◽  
Hao Che ◽  
Chengxu Feng ◽  
...  

An atomic interference gravimeter (AIG) is of great value in underwater aided navigation, but one of the constraints on its accuracy is vibration noise. For this reason, technology must be developed for its vibration isolation. Up to now, three methods have mainly been employed to suppress the vibration noise of an AIG, including passive vibration isolation, active vibration isolation and vibration compensation. This paper presents a study on how vibration noise affects the measurement of an AIG, a review of the research findings regarding the reduction of its vibration, and the prospective development of vibration isolation technology for an AIG. Along with the development of small and movable AIGs, vibration isolation technology will be better adapted to the challenging environment and be strongly resistant to disturbance in the future.


2001 ◽  
Vol 113 (5) ◽  
pp. 961-964 ◽  
Author(s):  
M. Eugenia Sanz ◽  
Alberto Lesarri ◽  
Juan C. López ◽  
José L. Alonso

2005 ◽  
Vol 26 (14) ◽  
pp. 1438-1451 ◽  
Author(s):  
Gernot Katzer ◽  
Alexander F. Sax

Sign in / Sign up

Export Citation Format

Share Document