The Measurement of SVOC Emission Rates from Building Materials

2017 ◽  
Vol 893 ◽  
pp. 369-374
Author(s):  
Hyun Tae Kim ◽  
Tae Woo Kim ◽  
Won Hwa Hong ◽  
Kang Guk Lee ◽  
Kim Kang Min

Recent studies have reported that indoor house dust contains a large volume of SVOC chemical substances such as phthalates. This study measured the SVOC emission rate from various types of building materials and conducted quantitative and qualitative analyses on the emitted substances. DBP and DEHP were detected in all building materials based on the result obtained from measuring the building materials produced in Japan, South Korea, and China. The DBP and DEHP emission rates (95 percentile) from the building materials used for the measurement in this study were 2.56 [μg/m2・h] and 11.63[μg/m2・h] respectively. Larger DBP and DEHP emission rate from building materials are believed to be the reason why a high level of DBP and DEHP is detected in house dust found in residential homes compared to other substances.

2018 ◽  
Vol 5 (4) ◽  
Author(s):  
Alexandra Funk

The author considers the features of the organization of works and construction materials used in the construction of buildings and structures in extreme climatic conditions. Also, the features of the influence of climatic conditions on the quality and basic properties of building materials, construction technology, etc. the High level of complexity of the organization of construction works, in particular, in the Arctic, caused by the aggressive environment, temperature changes (especially low in winter), land work is complicated by permafrost. This especially affects deep foundations, pipes, basement panels, piles. The author notes that the destruction of such objects is affected by the saturation of their ground water with its circulation from the bottom up. Also has a destructive effect and hydrostatic pressure, sea, river and lake water, next to which the construction site is being built. The author comes to the conclusion that the construction of buildings and structures, taking into account the construction area, which is characterized by certain meteorological and climatic conditions, has certain features, respectively, to increase the efficiency of construction in extreme climatic conditions-is a complex multi-faceted task of the organization and technology of construction production, designed to improve the quality of construction, reduce the timing of its implementation, labor and cost of work.


2019 ◽  
Vol 15 (2) ◽  
pp. 154-165 ◽  
Author(s):  
Elena N. Mokshina ◽  
Mihail I. Svyatkin

Introduction. The article deals with the main traditional outbuildings of the Mordvinians, reported on their functional purpose in economic activity. The forms and types of outbuildings, as well as the main building materials used by Mordvinians are described in details. Their significance in the religious and ceremonial life of the ethnic group is shown. Materials and Methods. The research is based on traditional methods of ethnographic science, such as field observation, survey and interviews, and a comprehensive approach. Among the methods of historical science comparative-historical, historical-genetic, problem-chronological, structural-system were used. Among the general scientific methods of research logical, descriptive, narrative, generalization, classification and systematization were involved. To achieve the results of the study, the materials collected by the authors in the course of field surveys conducted in the Mordovian villages were mainly used. Results and Discussion. Traditional outbuildings were of great importance in the economic activity of the Mordovian ethnic group. According to their functional purpose, they can be divided into the following groups: for livestock and poultry (stable, chicken coop, stable, kalda), sanitary and hygienic (bath), warehouse buildings for storage of food, utensils, firewood, animal feed (barn, cellar, woodshed, hayloft), for processing of grain (sheep, riga, mill). Depending on the welfare and financial capacity of the family, the number of outbuildings was different. As a rule, the wealthier families had more outbuildings than the less wealthier ones. The main building material for the construction of these buildings was wood. Conclusion. Thus, the traditional outbuildings of the Mordvinians occupied an important place in its economic activities. At the same time, each of them had its own purpose and performed certain functions. Some buildings, such as a bath and a barn, had not only economic purpose, but also were the venue for a number of prayers and ceremonies. It is now ordinarily they have banya (bath-house), outdoor courtyard with standing in different places sheds, barn and cellar.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Lino Bianco

AbstractRuins are a statement on the building materials used and the construction method employed. Casa Ippolito, now in ruins, is typical of 17th-century Maltese aristocratic country residences. It represents an illustration of secondary or anthropogenic geodiversity. This paper scrutinises these ruins as a primary source in reconstructing the building’s architecture. The methodology involved on-site geographical surveying, including visual inspection and non-invasive tests, a geological survey of the local lithostratigraphy, and examination of notarial deeds and secondary sources to support findings about the building’s history as read from its ruins. An unmanned aerial vehicle was used to digitally record the parlous state of the architectural structure and karsten tubes were used to quantify the surface porosity of the limestone. The results are expressed from four perspectives. The anatomy of Casa Ippolito, as revealed in its ruins, provides a cross-section of its building history and shows two distinct phases in its construction. The tissue of Casa Ippolito—the building elements and materials—speaks of the knowledge of raw materials and their properties among the builders who worked on both phases. The architectural history of Casa Ippolito reveals how it supported its inhabitants’ wellbeing in terms of shelter, water and food. Finally, the ruins in their present state bring to the fore the site’s potential for cultural tourism. This case study aims to show that such ruins are not just geocultural remains of historical built fabric. They are open wounds in the built structure; they underpin the anatomy of the building and support insights into its former dynamics. Ruins offer an essay in material culture and building physics. Architectural ruins of masonry structures are anthropogenic discourse rendered in stone which facilitate not only the reconstruction of spaces but also places for human users; they are a statement on the wellbeing of humanity throughout history.


2021 ◽  
Vol 13 (5) ◽  
pp. 935
Author(s):  
Matthew Varnam ◽  
Mike Burton ◽  
Ben Esse ◽  
Giuseppe Salerno ◽  
Ryunosuke Kazahaya ◽  
...  

SO2 cameras are able to measure rapid changes in volcanic emission rate but require accurate calibrations and corrections to convert optical depth images into slant column densities. We conducted a test at Masaya volcano of two SO2 camera calibration approaches, calibration cells and co-located spectrometer, and corrected both calibrations for light dilution, a process caused by light scattering between the plume and camera. We demonstrate an advancement on the image-based correction that allows the retrieval of the scattering efficiency across a 2D area of an SO2 camera image. When appropriately corrected for the dilution, we show that our two calibration approaches produce final calculated emission rates that agree with simultaneously measured traverse flux data and each other but highlight that the observed distribution of gas within the image is different. We demonstrate that traverses and SO2 camera techniques, when used together, generate better plume speed estimates for traverses and improved knowledge of wind direction for the camera, producing more reliable emission rates. We suggest combining traverses and the SO2 camera should be adopted where possible.


Author(s):  
Junyao Lyu ◽  
Feng Xiong ◽  
Ningxiao Sun ◽  
Yiheng Li ◽  
Chunjiang Liu ◽  
...  

Volatile organic compound (VOCs) emission is an important cause of photochemical smog and particulate pollution in urban areas, and urban vegetation has been presented as an important source. Different tree species have different emission levels, so adjusting greening species collocation is an effective way to control biogenic VOC pollution. However, there is a lack of measurements of tree species emission in subtropical metropolises, and the factors influencing the species-specific differences need to be further clarified. This study applied an in situ method to investigate the isoprene emission rates of 10 typical tree species in subtropical metropolises. Photosynthesis and related parameters including photosynthetic rate, intercellular CO2 concentration, stomatal conductance, and transpiration rate, which can influence the emission rate of a single species, were also measured. Results showed Salix babylonica always exhibited a high emission level, whereas Elaeocarpus decipiens and Ligustrum lucidum maintained a low level throughout the year. Differences in photosynthetic rate and stomatal CO2 conductance are the key parameters related to isoprene emission among different plants. Through the establishment of emission inventory and determination of key photosynthetic parameters, the results provide a reference for the selection of urban greening species, as well as seasonal pollution control, and help to alleviate VOC pollution caused by urban forests.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mohamed A. Farag ◽  
Moamen M. Elmassry ◽  
Masahiro Baba ◽  
Renée Friedman

Abstract Previous studies have shown that the Ancient Egyptians used malted wheat and barley as the main ingredients in beer brewing, but the chemical determination of the exact recipe is still lacking. To investigate the constituents of ancient beer, we conducted a detailed IR and GC-MS based metabolite analyses targeting volatile and non-volatile metabolites on the residues recovered from the interior of vats in what is currently the world’s oldest (c. 3600 BCE) installation for large-scale beer production located at the major pre-pharaonic political center at Hierakonpolis, Egypt. In addition to distinguishing the chemical signatures of various flavoring agents, such as dates, a significant result of our analysis is the finding, for the first time, of phosphoric acid in high level probably used as a preservative much like in modern beverages. This suggests that the early brewers had acquired the knowledge needed to efficiently produce and preserve large quantities of beer. This study provides the most detailed chemical profile of an ancient beer using modern spectrometric techniques and providing evidence for the likely starting materials used in beer brewing.


2019 ◽  
Vol 46 (11) ◽  
pp. 969-978 ◽  
Author(s):  
Marzieh Riahinezhad ◽  
Augusta Eve ◽  
Marianne Armstrong ◽  
Peter Collins ◽  
J.-F. Masson

Temperature and relative humidity (RH) data within the building envelope of a single-family home at the National Research Council of Canada’s Canadian Centre for Housing Technology were collected over five years. We report on the distribution, rate of change, and the limits of temperature and moisture variations for south-easting wall and south-facing wall and roof systems to better understand the in-situ environmental conditions to which building materials and components typical of homes in North America may be subjected. Over an average year, wall temperature varied from −25 °C to +45 °C, and temperature followed a bimodal distribution, with maxima at 0 °C to 5 °C and 15 °C to 20 °C. Each maximum represented about 1100 h of field exposure. Roof temperatures, which spanned a temperature range from −35 °C to 75 °C, did not show a Gaussian distribution but were characterized as being multi-modal. From values of temperature and RH, absolute moisture contents within the building envelope were found to range between 1 and 55 g/m3, with the most common values being 6–8 g/m3. The application of this information is discussed and related to the development of realistic accelerated aging conditions to obtain a more accurate durability assessment of building envelope materials used in Canadian dwellings.


2020 ◽  
Vol 12 (24) ◽  
pp. 10686
Author(s):  
Mona Abouhamad ◽  
Metwally Abu-Hamd

The objective of this paper is to apply the life cycle assessment methodology to assess the environmental impacts of light steel framed buildings fabricated from cold formed steel (CFS) sections. The assessment covers all phases over the life span of the building from material production, construction, use, and the end of building life, in addition to loads and benefits from reuse/recycling after building disposal. The life cycle inventory and environmental impact indicators are estimated using the Athena Impact Estimator for Buildings. The input data related to the building materials used are extracted from a building information model of the building while the operating energy in the use phase is calculated using an energy simulation software. The Athena Impact Estimator calculates the following mid-point environmental measures: global warming potential (GWP), acidification potential, human health potential, ozone depletion potential, smog potential, eutrophication potential, primary and non-renewable energy (PE) consumption, and fossil fuel consumption. The LCA assessment was applied to a case study of a university building. Results of the case study related to GWP and PE were as follows. The building foundations were responsible for 29% of the embodied GWP and 20% of the embodied PE, while the CFS skeleton was responsible for 30% of the embodied GWP and 49% of the embodied PE. The production stage was responsible for 90% of the embodied GWP and embodied PE. When benefits associated with recycling/reuse were included in the analysis according to Module D of EN 15978, the embodied GWP was reduced by 15.4% while the embodied PE was reduced by 6.22%. Compared with conventional construction systems, the CFS framing systems had much lower embodied GWP and PE.


Sign in / Sign up

Export Citation Format

Share Document