PL and DLTS Analysis of Carbon-Related Centers in Irradiated P-Type Cz-Si

2013 ◽  
Vol 205-206 ◽  
pp. 224-227 ◽  
Author(s):  
Bahman Raeissi ◽  
Naveengoud Ganagona ◽  
Augustinas Galeckas ◽  
Edouard V. Monakhov ◽  
Bengt Gunnar Svensson

Photoluminescence (PL) and deep level transient spectroscopy (DLTS) have been used to investigate carbon related defects in p–type Cz–Si induced by proton irradiation. The interstitial carbon–interstitial oxygen (CiOi) level in DLTS and the corresponding C–line (789.5 meV) in PL spectra are detected in as–irradiated samples. Formations of the so–called P–line at 767 meV in PL and a new defect level at about 0.39 eV above the valence band edge, Ev, in the DLTS spectra are observed in the annealed samples. The evolution of the CiOiand Ev+0.39 eV levels in DLTS and also the C– and P– lines in PL upon post–irradiation heat–treatment is investigated, showing that the intensity of the CiOilevel decreases with heat–treatment, which is consistent with the PL data for the C–line. The intensity of the Ev+0.39 eV level is enhanced and then saturates with annealing duration. We tentatively assign this level to the interstitial carbon–oxygen dimer (CiO2i).

2011 ◽  
Vol 178-179 ◽  
pp. 183-187
Author(s):  
Chi Kwong Tang ◽  
Lasse Vines ◽  
Bengt Gunnar Svensson ◽  
Eduard Monakhov

The interaction between hydrogen and the iron-boron pair (Fe-B) has been investigated in iron-contaminated boron-doped Cz-Si using capacitance-voltage measurements (CV) and deep level transient spectroscopy (DLTS). Introduction of hydrogen was performed by wet chemical etching and subsequent reverve bias annealing of Al Schottky diodes. The treatment led to the appearance of the defect level characteristic to interstitial iron (Fei) with a corresponding decrease in the concentration of the Fe-B pair. Concentration versus depth profiles of the defects show that dissociation of Fe-B occurs in the depletion region and capacitance-voltage measurements unveil a decrease in the charge carrier concentration due to passivation of B. These quantitative observations imply strongly that H promotes dissociation of Fe-B releasing Fei whereas no detectable passivation of Fe-B or Fei by H occurs.


1998 ◽  
Vol 510 ◽  
Author(s):  
Shabih Fatima ◽  
Jennifer Wong-Leung ◽  
John Fitz Gerald ◽  
C. Jagadish

AbstractSubthreshold damage in p-type Si implanted and annealed at elevated temperature is characterized using deep level transient spectroscopy (DLTS) and transmission electron microscopy (TEM). P-type Si is implanted with Si, Ge and Sn with energies in the range of 4 to 8.5 MeV, doses from 7 × 1012to 1×1014cm−2and all annealed at 800°C for 15 min. For each implanted specie, DLTS spectra show a transition dose called threshold dose above which point defects transform in to extended defects. DLTS measurements have shown for the doses below threshold, a sharp peak, corresponding to the signature of point defects and for doses above threshold a broad peak indicating the presence of extended defects. This is found to be consistent with TEM analyses where no defects are seen for the doses below threshold and the presence of extended defects for the doses above threshold. This suggests a defect transformation regime where point defects present below threshold are acting like nucleating sites for the extended defects. Also the mass dependence on the damage evolution has been observed, where rod-like defects are observed in the case of Si and (rod-like defects and loops) for Ge and Sn despite the fact that peak concentration of vacancies for Ge and Sn are normalized to the peak number of vacancies for Si.


2003 ◽  
Vol 798 ◽  
Author(s):  
H. Witte ◽  
K. Fluegge ◽  
A. Dadgar ◽  
A. Krtschil ◽  
A. Krost ◽  
...  

ABSTRACTThe electrical activity of iron in Fe- doped, and in Si and Mg co-doped GaN layers grown on sapphire substrates by metal organic vapor phase epitaxy was studied as shown by temperature dependent Hall Effect (TDH) measurements. In all samples iron doping generates an acceptor defect, which compensates donors in n-type GaN. Furthermore, iron doping causes strong potential inhomogeneities, which decrease the Hall mobility in the layers. To verify, if iron creates only hole traps, defects in n-type Si:Fe and Fe doped samples were investigated. The well known dominant electron traps in n-type GaN at 520 – 550 meV and 480 meV were found by deep level transient spectroscopy and thermal admittance spectroscopy, respectively. A high Fe-doped GaN layer shows a low p-type conductivity dominated by the iron acceptor. An activation energy of EV+ 460 meV was determined by TDH indicating, that the iron acceptor correlates with this defect level.


MRS Advances ◽  
2017 ◽  
Vol 2 (53) ◽  
pp. 3141-3146 ◽  
Author(s):  
Vladimir G. Litvinov ◽  
Alexander V. Ermachikhin ◽  
Dmitry S. Kusakin ◽  
Nikolay V. Vishnyakov ◽  
Valery V. Gudzev ◽  
...  

ABSTRACTThe influence of deep level defects lateral distribution in active layers of multicrystalline Si-based standard solar cells is investigated. Multicrystalline p-type Si wafers with 156×156 mm dimensions and 200 μm thickness were used for SCs preparation. One type of solar cells with conversion efficiency 20.4% was studied using capacitance voltage characteristics method (C-V) and by current deep level transient spectroscopy (I-DLTS). From various places along the diagonal of solar cell’s substrate with 20.4% efficiency nine pieces with an area ∼20 mm2 were extracted and studied. I-DLTS spectra of the five pieces from solar cell were measured. The features of deep levels defects concentration lateral distribution along the SC’s surface were studied.


2009 ◽  
Vol 615-617 ◽  
pp. 365-368 ◽  
Author(s):  
Koutarou Kawahara ◽  
Giovanni Alfieri ◽  
Tsunenobu Kimoto

The authors have investigated deep levels in the whole energy range of bandgap of 4H-SiC, which are generated by N+, P+, Al+ implantation, by deep level transient spectroscopy (DLTS). Ne+-implanted samples have been also prepared to investigate the pure implantation damage. In the n-type as-grown material, Z1/2 (Ec – 0.63 eV) and EH6/7 (Ec – 1.6 eV) are dominant deep levels. When the implant dose is low, seven peaks (IN1, IN3 ~ IN6, IN8, IN9) have emerged by implantation and annealing at 1000oC in the DLTS spectra from all n-type samples. After high-temperature annealing at 1700oC, however, most DLTS peaks disappeared, and two peaks, Z1/2 and EH6/7 survive. In the p-type as-grown material, D center (Ev + 0.40 eV) and HK4 (Ev + 1.4 eV) are dominant. When the implant dose is low, two peaks (IP1, IP3) have emerged by implantation and annealing at 1000oC, and four traps IP2, IP4 (Ev + 0.72 eV), IP7 (Ev + 1.3 eV), and IP8 (Ev + 1.4 eV) are dominant after annealing at 1700oC.


1991 ◽  
Vol 69 (3-4) ◽  
pp. 192-194
Author(s):  
I. Shih ◽  
S. L. Wu ◽  
L. Li ◽  
C. X. Qiu ◽  
P. Grant ◽  
...  

Thin films of MgO were deposited on p-type monocrystalline Si substrates as buffer layers for high-Tc superconductor/Si hybrid devices. After heat treatment at temperatures in the range from 700 to 1100 °C, the MgO films were removed and Ag/p-Si Schottky junctions formed. Deep-level transient spectroscopy measurements were made on the treated junctions. The sample treated at 1000 °C showed a single acceptor level located at 240 meV from the valence band edge.


1995 ◽  
Vol 378 ◽  
Author(s):  
M.-A. Trauwaert ◽  
J. Vanhellemont ◽  
H. E. Maes ◽  
A.-M. Van Bavel ◽  
G. Langouche ◽  
...  

AbstractResults are reported of a Deep Level Transient Spectroscopy (DLTS) study of the conversion of the divacancy, with energy level at Ev+0.19eV, to a level at Ev+0.24eV after anneal at temperatures below its dissociation temperature (300°C). In literature both levels have been associated with the donor level of the divacancy.Diodes processed on p-type Float Zone (FZ) and Czochralski (Cz) silicon wafers with boron concentration between 0.2 and 3E15 cm−3 are irradiated with 2 MeV electrons. Before and after anneal (200°C and 250°C) DLTS spectra are recorded to get a full electrical characterisation of the induced defects.The observed conversion is proposed to be a gradual transformation of the divacancy to a divacancy-oxygen complex.


1998 ◽  
Vol 510 ◽  
Author(s):  
Min Gong ◽  
C. D. Beling ◽  
S. Fung ◽  
G. Brauer ◽  
H. Wirth ◽  
...  

AbstractTwo deep levels, located at Ev+0.26eV and Ec-0.44eV, in Al-implanted n-type samples and one at Ev+0.48eV in p-type samples have been observed by the deep level transient spectroscopy. The level of is identified as the shallower aluminum-acceptor. The 1.7 MeV electron-irradiation, used as a probe to distinguish the implantation induced deep-levels, induces at least six electron traps in the n-SiC and one hole-trap in the p-type material. The peak positions of these deep-levels in DLTS spectra are quite different from those induced by Al-implantation. This result suggests that various damages are formed after heavy ion (Al) and light particle (e) irradiation.


2015 ◽  
Vol 242 ◽  
pp. 302-307
Author(s):  
Nikolai Yarykin ◽  
Jörg Weber

The spectrum of defects produced by 5 MeV electron irradiation at room temperature in the oxygen-lean p-type silicon strongly contaminated with interstitial copper (Cui) is studied using the deep-level transient spectroscopy. It is observed that the interstitial carbon defects (Ci), which are abundant in irradiated copper-free samples, are not detected directly after irradiation. The phenomenon is attributed to the formation of a {Cui, Ci} complexes which exhibit no deep levels in the lower half of the band gap. The complexes are shown to dissociate under anneals at 300-340 K resulting in the appearance of the Ci species.


2003 ◽  
Vol 766 ◽  
Author(s):  
V. Ligatchev ◽  
T.K.S. Wong ◽  
T.K. Goh ◽  
Rusli Suzhu Yu

AbstractDefect spectrum N(E) of porous organic dielectric (POD) films is studied with capacitance deep-level-transient-spectroscopy (C-DLTS) in the energy range up to 0.7 eV below conduction band bottom Ec. The POD films were prepared by spin coating onto 200mm p-type (1 – 10 Δcm) single-side polished silicon substrates followed by baking at 325°C on a hot plate and curing at 425°C in furnace. The film thickness is in the 5000 – 6000 Å range. The ‘sandwich’ -type NiCr/POD/p-Si/NiCr test structures showed both rectifying DC current-voltage characteristics and linear 1/C2 vs. DC reverse bias voltage. These confirm the applicability of the C-DLTS technique for defect spectrum deconvolution and the n-type conductivity of the studied films. Isochronal annealing (30 min in argon or 60 min in nitrogen) has been performed over the temperature range 300°C - 650°C. The N(E) distribution is only slightly affected by annealing in argon. However, the distribution depends strongly on the annealing temperature in nitrogen ambient. A strong N(E) peak at Ec – E = 0.55 – 0.60 eV is detected in all samples annealed in argon but this peak is practically absent in samples annealed in nitrogen at Ta < 480°C. On the other hand, two new peaks at Ec – E = 0.12 and 0.20 eV appear in the N(E) spectrum of the samples annealed in nitrogen at Ta = 650°C. The different features of the defect spectrum are attributed to different interactions of argon and nitrogen with dangling carbon bonds on the intra-pore surfaces.


Sign in / Sign up

Export Citation Format

Share Document