sodium acetate solution
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 6 (1) ◽  
pp. 5
Author(s):  
Dionisio Badagliacco ◽  
Vincenzo Fiore ◽  
Carmelo Sanfilippo ◽  
Antonino Valenza

This paper aims to investigate the ability of an eco-friendly and cheap treatment based on sodium acetate solutions to improve the mechanical properties of flax fiber-reinforced composites. Flax fibers were treated for 5 days (i.e., 120 h) at 25 °C with mildly alkaline solutions at 5%, 10% and 20% weight content of the sodium salt. Quasi-static tensile and flexural tests, Charpy impact tests and dynamical mechanical thermal (DMTA) tests were carried out to evaluate the mechanical properties of the resulting composites. Fourier transform infrared analysis (FTIR) was used to evaluate the chemical modification on the fibers surface due to the proposed treatment, whereas scanning electron microscope (SEM) and helium pycnometry were used to get useful information about the morphology of composites. It was found that the treatment with 5% solution of sodium acetate leads to the best mechanical performance and morphology of flax fiber-reinforced composites. SEM analysis confirmed these findings highlighting that composites reinforced with flax fibers treated in 5% sodium acetate solution show an improved morphology compared to the untreated ones. On the contrary, detrimental effects on the morphology as well as on the mechanical performance of composites were achieved by increasing the salt concentration of the treating solution.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4304-4304
Author(s):  
Federico Grossi ◽  
Michael Yeh ◽  
Raymond Xu ◽  
Pascal Deschatelets

Abstract Background: The complement cascade is part of innate immunity and is involved in multiple inflammatory processes and implicated in several diseases. Pegcetacoplan (PEG) is a pegylated, cyclic peptide that binds to complement protein C3 and is a broad inhibitor of the complement cascade. Subcutaneous (SC) dosing of PEG has demonstrated efficacy in the treatment of chronic conditions, such as paroxysmal nocturnal hemoglobinuria (PNH) and was recently approved by the FDA for the treatment of PNH in adults. Intravenous (IV) PEG administration may allow for more rapid and robust reduction of uncontrolled complement activation, especially in an acute setting, such as an acute hemolytic episode in PNH. Aims: To determine the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of IV PEG in acetate-buffered saline treatment in a Phase 1 single ascending dose study (ACTRN12616000700437) in healthy subjects. Methods: On Day 1, four cohorts with PEG doses (200mg, 600mg, 1500mg, 2300mg) received a single bolus of PEG IV (or matching placebo) administered over 30min. Blood samples for PK analyses of PEG concentration and PD analyses of alternative complement pathway hemolytic activity (AH50), total complement hemolytic activity (CH50), C3 and C3a levels were collected at 15, 30, and 60min, 4, 8, 12, and 24hrs, and Days 3, 4, 5, 6, 7, 8, 15, 22, 29, and 43. Subjects were monitored during a safety period from Day 2 to 8 by physical examination, ECG, hematology, serum chemistry, monitoring for injection site reaction and treatment emergent adverse events (TEAEs). Follow-up safety assessments were performed on Days 15, 22, 29, and 43. Results: Twenty subjects were enrolled and allocated 4:1 to PEG or placebo per cohort (PEG-200mg, n=4; PEG-600mg, n=4; PEG-1500mg, n=4; PEG-2300mg, n=4; pooled placebo, n=4). Following a single IV dose, peak concentration (C max) of PEG was observed at 1hr post-dose (infusion start) for most cohorts (mean serum concentration: PEG-200mg, 61μg/mL; PEG-600mg, 193μg/mL; PEG-2300mg, 708μg/mL) except PEG-1500mg (occurred at 4hrs, 542μg/mL). PEG concentration at the end of infusion was similar to the observed C max. PEG concentration declined in a mono-exponential manner, with a terminal elimination half-life ranging from 200 to 285 hrs (Figure). Total body clearance of PEG after IV administration was similar across cohorts. Early, immediate decreases in mean AH50 values were detected within 1hr in all PEG cohorts, with 1500 and 2300mg doses decreasing AH50 to undetectable levels (Figure). Decreases in mean AH50 values were maintained for at least 12, 72, 144 and 168hrs after single doses of 200, 600, 1500 and 2300mg PEG, respectively. All PEG groups had an initial rapid decrease within 1hr in mean C3a levels, with all dose groups having trough mean C3a levels within 24hrs of dosing. Dose related decreases in mean C3a were not observed, all doses recorded a max mean decrease of 47% to 57%. No changes seen with placebo for C3a. C3 and CH50 results will be forthcoming. Of the twenty subjects included in the study, 11 (55.0%) experienced a treatment-related adverse event (TEAE). The most common TEAEs in the PEG group were headache, (n=6, 37.5%); upper respiratory infections attributed to seasonal viral infection (n=2, 12.5%); diarrhea (n=2, 12.5%). No serious adverse events, deaths, or severe TEAEs occurred. One subject (5.0%) in the PEG-2300mg cohort experienced a moderate TEAE (infusion-related reaction, dizziness, clamminess, nausea) that led to study discontinuation. Conclusions: These results suggest that administration of IV PEG in a sodium acetate solution has a favorable safety profile and effectively increases PEG serum concentrations while decreasing complement activity within the first hour post-dose in healthy subjects. Although the safety and efficacy of SC PEG treatment has been demonstrated in patients with PNH, IV PEG administration could serve as a useful therapeutic option for patients with a need for rapid control of complement activity. While this formulation is different than the commercially available PEG (EMPAVELI), which is administered SC and is suspended in sorbitol, the results suggest that IV PEG is well tolerated and provides the grounds for future investigations of IV PEG administration. Figure 1 Figure 1. Disclosures Grossi: Apellis Pharmaceuticals: Current Employment, Current equity holder in publicly-traded company. Yeh: Apellis Pharmaceuticals, Inc.: Current Employment, Current equity holder in publicly-traded company. Xu: Apellis Pharmaceuticals: Current Employment. Deschatelets: Apellis Pharmaceuticals: Current Employment, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. OffLabel Disclosure: Pegcetacoplan, a subcutaneously administered C3-inhibitor that was recently approved by the US FDA for the treatment of PNH, controls IVH and prevents EVH. While subcutaneous pegcetacoplan is safe and effective, the aim of this study was to determine the safety, pharmacokinetics, and pharmacodynamics of IV pegcetacoplan in acetate-buffered saline treatment, different from current FDA approved formulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Domenico Rizzo ◽  
Enrico Ravera ◽  
Marco Fragai ◽  
Giacomo Parigi ◽  
Claudio Luchinat

Magnetic resonance imaging (MRI) often requires contrast agents to improve the visualization in some tissues and organs, including the gastrointestinal tract. In this latter case, instead of intravascular administration, oral agents can be used. Natural oral contrast agents, such as fruit juice, have the advantages of better taste, tolerability, and lower price with respect to the artificial agents. We have characterized the relaxometry profiles of pineapple juice in order to understand the origin of the increase in relaxation rates (and thus of the MRI contrast) in reference to its content of manganese ions. Furthermore, we have characterized the relaxometry profiles of pineapple juice in the presence of alginate in different amounts; the interaction of the manganese ions with alginate slows down their reorientation time to some extent, with a subsequent increase in the relaxation rates. The relaxometry profiles were also compared with those of manganese(II) solutions in 50 mmol/dm3 sodium acetate solution (same pH of pineapple juice), which revealed sizable differences, mostly in the number of water molecules coordinated to the metal ion, their lifetimes, and in the constant of the Fermi-contact interaction. Finally, the fit of the transverse relaxivity shows that the increased viscosity in the hydrogel formulations can improve significantly the negative contrast of pineapple juice at the magnetic fields relevant for clinical MRI.


Author(s):  
A. O. Malysheva ◽  
G. E. Kodina ◽  
E. A. Lyamtseva ◽  
N. A. Taratonenkova ◽  
A. S. Lunev

Most important quality attributes of any radiopharmaceutical (RPh) are its radiochemical purity (RCP) or content of radiochemical impurities (RCIs) that have to comply with respective norms and limits. However, at present, there is no unified approach to validation of analytical methods in the context of highly radioactive samples.The aim of the study was to develop an approach to validation of methods for determination of RCI content in RPhs.Materials and methods: the authors determined the content of RCIs in a radiopharmaceutical formulation containing a complex of technetium-99m and methylenediphosphonic acid by the radiometric method after isolation of impurities from the main compound by thin-layer chromatography using silica gel and methyl ethyl ketone (for sodium pertechnetate determination) and silica gel and 13.6% sodium acetate solution (for determination of hydrolysed reduced technetium-99m). The radioactivity was registered by a chromatogram scanner with a detector of gamma-rays with energies from 0.05 to 1.5 MeV.Results: the paper analyses existing official approaches to validation of analytical procedures and compares them with the results of experimental studies described in available publications. It assesses the validation parameters for compliance with the acceptance criteria set forth in the current regulations and substantiates selectivity of chromatographic determination of impurities under the selected test conditions. Coefficients of variation for repeatability, reproducibility, and accuracy did not exceed 4.5, 2.8, and 8.9%, respectively, given the relative error of not more than 10.5%. The study demonstrated signal linearity for the 10-fold dilution of the standardised sodium pertechnetate solution, it also demonstrated correspondence between the applied and detected radioactivity when performing the test in the impurity content range of 0.5–5%. The validation procedure was associated with significant radiation burden for the personnel of the quality control laboratory.Conclusions: the authors suggested a methodological approach to validation of methods for determination of RCI content in technetium-99m-based RPhs. This approach may be used in the development of a guideline on validation of analytical methods for RCP/RCI determination in RPhs, or for introduction of relevant sections into existing documents.


2020 ◽  
Vol 92 (10) ◽  
pp. 1627-1641
Author(s):  
Guangguo Wang ◽  
Yongquan Zhou ◽  
He Lin ◽  
Zhuanfang Jing ◽  
Hongyan Liu ◽  
...  

AbstractThe structure of aq. sodium acetate solution (CH3COONa, NaOAc) was studied by X-ray scattering and density function theory (DFT). For the first hydrated layer of Na+, coordination number (CN) between Na+ and O(W, I) decreases from 5.02 ± 0.85 at 0.976 mol/L to 3.62 ± 1.21 at 4.453 mol/L. The hydration of carbonyl oxygen (OC) and hydroxyl oxygen (OOC) of CH3COO− were investigated separately and the OC shows a stronger hydration bonds comparing with OOC. With concentrations increasing, the hydration shell structures of CH3COO− are not affected by the presence of large number of ions, each CH3COO− group binds about 6.23 ± 2.01 to 7.35 ± 1.73 water molecules, which indicates a relatively strong interaction between CH3COO− and water molecules. The larger uncertainty of the CN of Na+ and OC(OOC) reflects the relative looseness of Na-OC and Na-OOC ion pairs in aq. NaOAc solutions, even at the highest concentration (4.453 mol/L), suggesting the lack of contact ion pair (CIP) formation. In aq. NaOAc solutions, the so called “structure breaking” property of Na+ and CH3COO− become effective only for the second hydration sphere of bulk water. The DFT calculations of CH3COONa (H2O)n=5–7 clusters suggest that the solvent-shared ion pair (SIP) structures appear at n = 6 and become dominant at n = 7, which is well consistent with the result from X-ray scattering.


2020 ◽  
Author(s):  
◽  
Guadalupe Yunnuen Becerra Sánchez

Technological advance has brought with it a high demand and the constant replacement of electronic devices. Many of these technological devices (e.g., cell phones, tablets, televisions, computers) use indium in the form of indium oxide and tin (ITO) for the manufacture of the liquid crystal display (LCD). Indium is an element that is not abundant in nature, it is obtained mainly through a secondary process in the extraction of zinc oxide. In 2019, about 760 metric tons of indium were produced worldwide (Garside, 2020). For all of the above, it has become necessary to propose novel methods for recovering indium from electronic waste. In this work, an indium recovery process is evaluated, which is viable both, from an economic and an environmental point of view. An indium leaching process is developed by using acetic acid as leaching agent. The LCD screens, mainly computer, were disassembled and reduced to a size <200 mesh, this through the use of a zircon pearl mill. According to the diagrams obtained from the MEDUSA program, leaching occurs at pH of 4, so it was adjusted with a sodium acetate solution. For each 5 g of solid sample, a solution of 250 ml of 0.5 M acetic acid was used, while 0.1 M sodium thiosulfate was used as a reducing agent. Tests were carried out at three different temperatures: 25 ºC, 60 ºC and 80 ºC, under the same operating conditions. At 80 ºC, the highest extraction of the species of interest was obtained after 24 h, which was 320 mg for each kg of solid sample. In this process of recovery of indium, an extraction percentage of approximately 70% was obtained. In order to explain the kinetics of the leaching process, the decreasing core kinetic model without ash formation was used. From this it was found that the stage that controls the process is the diffusion through the fluid layer, where according to the Damköhler number the process is controlled by the reaction on the solid surface.


2019 ◽  
Vol 5 (7) ◽  
pp. eaav4916 ◽  
Author(s):  
Hyunmin Cho ◽  
Jinhyeong Kwon ◽  
Inho Ha ◽  
Jinwook Jung ◽  
Yoonsoo Rho ◽  
...  

Active control of transparency/color is the key to many functional optoelectric devices. Applying an electric field to an electrochromic or liquid crystal material is the typical approach for optical property control. In contrast to the conventional electrochromic method, we developed a new concept of smart glass using new driving mechanisms (based on mechanical stimulus and thermal energy) to control optical properties. This mechano-thermo-chromic smart glass device with an integrated transparent microheater uses a sodium acetate solution, which shows a unique marked optical property change under mechanical impact (mechanochromic) and heat (thermochromic). Such mechano-thermo-chromic devices may provide a useful approach in future smart window applications that could be operated by external environment conditions.


2018 ◽  
Vol 74 (11) ◽  
pp. 1355-1361 ◽  
Author(s):  
Reetam Kaushik ◽  
Imran Khan ◽  
Mukesh Kumar Saini ◽  
Firasat Hussain ◽  
Masahiro Sadakane

A sandwiched-type carbonate-encapsulated yttrium-containing arsenotungstate(III) has been synthesized under mild reaction conditions. The polyanion [NaCH3COO{Y2(H2O)3(B-α-AsW9O33)2(W2O5)(CO3)}]12− (1) was isolated as a solid crystalline material by the reaction of a YIII salt with the sodium salt of trilacunary [AsW9O33]9− in sodium acetate solution. The sodium salt of the polyanion, i.e. Na12[Na(CH3COO){Y2(AsW9O33)2(W2O5)(CO3)(H3O)3}]·22H2O (1a), was characterized by various analytical techniques, such as FT–IR, single-crystal X-ray diffraction (SC–XRD), TGA (thermogravimetric analysis), 13C NMR and ESI–MS (electrospray ionization mass spectrometry). SC–XRD studies revealed that the polyanion crystallizes in the triclinic space group P\overline{1}. The structure showed that the polyanion is a carbonate-encapsulated sandwich-type species, consisting of two trilacunary B-α-[AsW9O33]9−, with a lone-pair-containing AsIII heteroatom, together with two extra tungsten centres and two yttrium cations at the sandwich position, where CH3COO− and Na+ ions act as linkers between the two polyanion units. In addition, we have also synthesized two carbonate-encapsulated germanotungstates(IV), without lone-pair-containing heteroatoms, with the formula [Ln3(A-β-GeW9O34)2(CO3)(H2O)3]13− [Ln = YIII (2) and YbIII (3)], i.e. Y2K3Na4[Y3(A-β-GeW9O34)2(CO3)(H2O)3]·19H2O (2a) and YbK8Na2[Yb(A-β-GeW9O34)2(CO3)(H2O)3]·16H2O (3a), and characterized them by FT–IR, SC–XRD, TGA and ESI–MS. Here, the lanthanide ions act as linkers, extending the structures into higher dimensions. Sodium and potassium ions also play a key role as linkers, further extending the structure. The packing shows the presence of certain hydrophilic pores within the structure.


Sign in / Sign up

Export Citation Format

Share Document