electrical stability
Recently Published Documents


TOTAL DOCUMENTS

453
(FIVE YEARS 112)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Vol 2 ◽  
Author(s):  
Min Suk Lee ◽  
Akshay Paul ◽  
Yuchen Xu ◽  
W. David Hairston ◽  
Gert Cauwenberghs

With the rising need for on-body biometric sensing, the development of wearable electrophysiological sensors has been faster than ever. Surface electrodes placed on the skin need to be robust in order to measure biopotentials from the body reliably and comfortable for extended wearability. The electrical stability of nonpolarizable silver/silver chloride (Ag/AgCl) and its low-cost, commercial production have made these electrodes ubiquitous health sensors in the clinical environment, where wet gels and long wires are accommodated by patient immobility. However, smaller, dry electrodes with wireless acquisition are essential for truly wearable, continuous health sensing. Currently, techniques for the robust fabrication of custom Ag/AgCl electrodes are lacking. Here, we present three methods for the fabrication of Ag/AgCl electrodes: oxidizing Ag in a chlorine solution, electroplating Ag, and curing Ag/AgCl ink. Each of these methods is then used to create three different electrode shapes for wearable application. Bench-top and on-body evaluation of the electrode techniques was achieved by electrochemical impedance spectroscopy (EIS), calculation of variance in electrocardiogram (ECG) measurements, and analysis of auditory steady-state response (ASSR) measurement. Microstructures produced on the electrode by each fabrication technique were also investigated with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The custom Ag/AgCl electrodes were found to be efficient in comparison with standard, commercial Ag/AgCl wet electrodes across all three of our presented techniques, with Ag/AgCl ink shown to be the better out of the three in bench-top and biometric recordings.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3400
Author(s):  
Jian Dong ◽  
Yuanyuan Zhu ◽  
Zhifu Liu ◽  
Meng Wang

This paper reviews the material properties, fabrication and functionalities of liquid metal-based devices. In modern wireless communication technology, adaptability and versatility have become attractive features of any communication device. Compared with traditional conductors such as copper, the flow characteristics and lack of elastic limit of conductive fluids make them ideal alternatives for applications such as flexible circuits, soft electronic devices, wearable stretch sensors, and reconfigurable antennas. These fluid properties also allow for innovative manufacturing techniques such as 3-D printing, injecting or spraying conductive fluids on rigid/flexible substrates. Compared with traditional high-frequency switching methods, liquid metal (LM) can easily use micropumps or an electrochemically controlled capillary method to achieve reconfigurability of the device. The movement of LM over a large physical dimension enhances the reconfigurable state of the antenna, without depending on nonlinear materials or mechanisms. When LM is applied to wearable devices and sensors such as electronic skins (e-skins) and strain sensors, it consistently exhibits mechanical fatigue resistance and can maintain good electrical stability under a certain degree of stretching. When LM is used in microwave devices and paired with elastic linings such as polydimethylsiloxane (PDMS), the shape and size of the devices can be changed according to actual needs to meet the requirements of flexibility and a multistate frequency band. In this work, we discuss the material properties, fabrication and functionalities of LM.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2013
Author(s):  
Guilherme dos Anjos Camargo ◽  
Leandro Ferreira ◽  
Diego José Schebelski ◽  
Amanda Martinez Lyra ◽  
Fernanda Malaquias Barboza ◽  
...  

Background: Tacrolimus (TAC) is a drug of natural origin used in conventional topical dosage forms to control atopic dermatitis. However, direct application of the drug often causes adverse side effects in some patients. Hence, drug nanoencapsulation could be used as an improved novel therapy to mitigate the adverse effects and enhance bioavailability of the drug. Methods: Physicochemical properties, in vitro drug release experiments, and in vivo anti-inflammatory activity studies were performed. Results: TAC-loaded nanocapsules were successfully prepared by the interfacial deposition of preformed polymer using poly(ε-caprolactone) (PCL). The nanoparticulate systems presented a spherical shape with a smooth and regular surface, adequate diameter (226 to 250 nm), polydispersity index below 0.3, and suitable electrical stability (−38 to −42 mV). X-ray diffraction confirmed that the encapsulation method provided mainly the drug molecular dispersion in the nanocapsule oily core. Fourier-transform infrared spectra suggested that nanoencapsulation did not result in chemical bonds between drug and polymer. In vitro drug dissolution experiments showed a controlled release with a slight initial burst. The release kinetics showed zero-order kinetics. As per the Korsmeyer–Peppas model, anomalous transport features were observed. TAC-loaded PCL nanocapsules exhibited excellent anti-inflammatory activity when compared to the free drug. Conclusions: TAC-loaded PCL nanocapsules can be suitably used as a novel nano-based dosage form to control atopic dermatitis.


2021 ◽  
Vol 34 (12) ◽  
pp. 125018
Author(s):  
Fan Yang ◽  
Ruipeng Zhao ◽  
Bowan Tao ◽  
Xi Chen ◽  
Tao Huang ◽  
...  

Abstract An advanced electrical heating technique was proposed and adopted for the reel-to-reel deposition of double-sided Gd x Y1−x Ba2Cu3O7−δ (Y(Gd)BCO) films on the surface of LaMnO3/epitaxial-MgO/IBAD-MgO/Y2O3/Al2O3/Hastelloy tapes based on the metal organic chemical vapor deposition process. In this technique, heating current is introduced into alloy tape to produce heat through the electric brushes. The use of thin Hastelloy tapes is an effective method to obtain a high engineering current density. However, the reduction of the substrate thickness will directly attenuate its mechanical strength, which will lead to the deformation of tapes at high temperature based on original electric heating device. More seriously, the electrical contact between the alloy substrate and the brush will deteriorate, which could cause ignition and ablation at the edge of the tapes. Therefore, in order to improve mechanical and electrical stability, we redesigned a novel electrical heating device to deposit Y(Gd)BCO films. Furthermore, through adopting the multiple-deposition process based on the new electrical heating device, the J e of Y(Gd)BCO film can reach 900 A mm−2 (at self-field, 77 K), which has been significantly improved compared with the J e before optimization.


2021 ◽  
Vol 2 (6) ◽  
pp. 1-11
Author(s):  
Pande Luthfhy Rahayu ◽  
Thomson Nadapdap ◽  
Deli Theo

The purpose of this study was to analyze the factors that affect the waiting time for clinical laboratory examinations at RSU Haji Medan in 2021. This study is a mixed method. Using a total sampling of 17 people, namely all laboratory workers, the main informants in this study were clinical pathology doctors, room coordinators, clinical laboratory analysts at Haji Medan General Hospital (RSU) totaling 3 people and patients totaling 3 people. 1 additional informant, namely the Management section at RSU Haji Medan. The quantitative results are that there is a relationship between the qualifications of laboratory personnel having a value of p = 0.000, at the facility p = 0.044, there is no relationship between the transportation of specimens, the value of p = 0.099, there is a relationship between pre-analytical, analytical and pre-analytical problems. post analytic p value = 0.022, there is no electrical stability relationship p value = 0.235. Based on the results of research according to information and informants about the qualifications of officers running smoothly. have to send the sample to a private laboratory. Based on these results, it was concluded that the waiting time for laboratory results at RSU Haji has reached the standard that is in accordance with the minimum service standards at the Haji General Hospital in Medan City.


2021 ◽  
Vol 73 (11) ◽  
pp. 53-54
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 204041, “Automatic Drilling-Fluids Monitoring,” by Knut Taugbøl, SPE, Equinor, and Bengt Sola and Matthew Forshaw, SPE, Baker Hughes, et al., prepared for the 2021 SPE/IADC International Drilling Conference and Exhibition, originally scheduled to be held in Stavanger, 9–11 March. The paper has not been peer reviewed. The complete paper presents new units for automatic drilling-fluids measurements with emphasis on offshore drilling applications. The surveillance of fluid properties and the use of data in an onshore operations center is discussed. The authors present experiences from use of these data in enabling real-time hydraulic measurements and models for automatic drilling control and explain how these advances can improve safety in drilling operations and drilling efficiency. Introduction An operator has worked with different suppliers for several years to find and develop technology for automatic measurements of drilling-fluid properties. In the described study, methods for measuring parameters such as viscosity, fluid loss control, pH, electrical stability, particle-size distribution, and cuttings morphology and mineralogy were all fitted into a flow loop in an onshore test center. These tests, however, were all performed with prototype equipment. Since then, work has continued to optimize equipment for offshore installations, made for operating in harsh environments and requiring limited maintenance to provide continuous and reliable data quality. The fluid-measuring technique presented in this paper is based on rheology measurement through a pipe rheometer and density measurements through a Coriolis meter. This rheometer measures at ambient temperature. Dual DP is the terminology that refers to pressure measurements between two differential pressure sensors. The dual-DP pipe rheometer is set up with high-accuracy pressure transducers to measure pressure loss inside the straight section of the pipe rheometer. By varying the flow rate through pipes of different dimensions, a rheology profile at varying shear rates can be calculated. Field Implementation Installation of a unit begins with a rig survey conducted in concert with the drilling contractor to find the best location and sampling point. Fluid normally is taken from the charge manifold for the mud pumps, ensuring measurement of the fluid going into the well. The first installation in the North Sea of an automatic fluid-monitoring (AFM) unit was in 2017. This unit is still operational, sending data to an onshore support center. Fig. 1 shows such a unit installed offshore. The AFM unit has only one movable part, the monopump supplying drilling fluid through the unit. Once the dual-DP rheometer was factory-acceptance-tested in the yard, it was sent offshore to be commissioned and verified on a fixed installation in the North Sea. The related data presented in the complete paper were acquired in the field while drilling the 355-m, 8½-in. section with 1.35-SG low-equivalent-circulating-density oil-based drilling fluid, with drilling conducted at approximately 4000 m measured depth. The mud engineer onboard was requested to perform rheology checks on a viscometer at equal ambient temperature to the AFM so that the results could be compared; the AFM also measures rheology at ambient temperature.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3775
Author(s):  
Cecilia Shaer ◽  
Leah Oppenheimer ◽  
Alice Lin ◽  
Hatsuo Ishida

This comprehensive review article summarizes the key properties and applications of advanced carbonaceous materials obtained from polybenzoxazines. Identification of several thermal degradation products that arose during carbonization allowed for several different mechanisms (both competitive ones and independent ones) of carbonization, while also confirming the thermal stability of benzoxazines. Electrochemical properties of polybenzoxazine-derived carbon materials were also examined, noting particularly high pseudocapacitance and charge stability that would make benzoxazines suitable as electrodes. Carbon materials from benzoxazines are also highly versatile and can be synthesized and prepared in a number of ways including as films, foams, nanofibers, nanospheres, and aerogels/xerogels, some of which provide unique properties. One example of the special properties is that materials can be porous not only as aerogels and xerogels, but as nanofibers with highly tailorable porosity, controlled through various preparation techniques including, but not limited to, the use of surfactants and silica nanoparticles. In addition to the high and tailorable porosity, benzoxazines have several properties that make them good for numerous applications of the carbonized forms, including electrodes, batteries, gas adsorbents, catalysts, shielding materials, and intumescent coatings, among others. Extreme thermal and electrical stability also allows benzoxazines to be used in harsher conditions, such as in aerospace applications.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3439
Author(s):  
Algirdas Lazauskas ◽  
Dalius Jucius ◽  
Brigita Abakevičienė ◽  
Asta Guobienė ◽  
Mindaugas Andrulevičius

The trilayer composite was fabricated by combining functional layers of fumed SiO2, thiol-ene, and poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT-PSS). Optical, scratch-healing, non-wetting, and electrical stability was investigated at different instances of time after thermal and solar irradiance treatment. The trilayer composite was found to be optically stable and highly transparent for visible light after thermal and irradiance treatment for 25 h. Both treatment processes had a minor effect on the shape-memory assisted scratch-healing performance of the trilayer composite. Thermal treatment and solar irradiance did not affect the superhydrophobic properties (contact angle 170 ± 1°) of the trilayer composite. The sheet resistance increased from 90 ± 3 Ω/square (initial) to 109 ± 3 Ω/square (thermal) and 149 ± 3 Ω/square (irradiance) after 25 h of treatment, which was considered as not significant change.


2021 ◽  
pp. 114300
Author(s):  
Nick Schneider ◽  
Elizabeth Buitrago ◽  
Wolfgang Vitale ◽  
Luca De-Michielis

2021 ◽  
Vol 2 (4) ◽  
pp. 445-453
Author(s):  
Khaoula Ferchichi ◽  
Sebastien Pecqueur ◽  
David Guerin ◽  
Ramzi Bourguiga ◽  
Kamal Lmimouni

In this work, we demonstrate P3HT (poly 3-hexylthiophene) organic rectifier diode both in rigid and flexible substrate with a rectification ratio up to 106. This performance has been achieved through tuning the work function of gold with a self-assembled monolayer of 2,3,4,5,6-pentafluorobenzenethiol (PFBT). The diode fabricated on flexible paper substrate shows a very good electrical stability under bending tests and the frequency response is estimated at more than 20 MHz which is sufficient for radio frequency identification (RFID) applications. It is also shown that the low operating voltage of this diode can be a real advantage for use in a rectenna for energy harvesting systems. Simulations of the diode structure show that it can be used at GSM and Wi-Fi frequencies if the diode capacitance is reduced to a few pF and its series resistance to a few hundred ohms. Under these conditions, the DC voltages generated by the rectenna can reach a value up to 1 V.


Sign in / Sign up

Export Citation Format

Share Document