phenotypic robustness
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 22)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Shreeta Chakraborty ◽  
Nina Kopitchinski ◽  
Ariel Eraso ◽  
Parirokh Awasthi ◽  
Raj Chari ◽  
...  

Transcriptional control by distal enhancers is an integral feature of gene regulation. To understand how enhancer-promoter interactions arise and assess the impact of disrupting 3D chromatin structure on gene expression, we generated an allelic series of mouse mutants that perturb the physical structure of the Sox2 locus. We show that in the epiblast and in neuronal tissues, CTCF-mediated loops are neither required for the interaction of the Sox2 promoter with distal enhancers, nor for its expression. Insertion of various combinations of CTCF motifs between Sox2 and its distal enhancers generated ectopic loops with varying degrees of insulation that directly correlated with reduced transcriptional output. Yet, even the mutants exhibiting the strongest insulation, with six CTCF motifs in divergent orientation, could not fully abolish activation by distal enhancers, and failed to disrupt implantation and neurogenesis. In contrast, cells of the anterior foregut were more susceptible to chromatin structure disruption with no detectable SOX2 expression in mutants with the strongest CTCF-mediated boundaries. These animals phenocopied loss of SOX2 in the anterior foregut, failed to separate trachea from esophagus and died perinatally. We propose that baseline transcription levels and enhancer density may influence the tissue-specific ability of distal enhancers to overcome physical barriers and maintain faithful gene expression. Our work suggests that high affinity enhancer-promoter interactions that can overcome chromosomal structural perturbations, play an essential role in maintaining phenotypic robustness.


2021 ◽  
Vol 18 (183) ◽  
Author(s):  
Nora S. Martin ◽  
Sebastian E. Ahnert

Genotype–phenotype maps link genetic changes to their fitness effect and are thus an essential component of evolutionary models. The map between RNA sequences and their secondary structures is a key example and has applications in functional RNA evolution. For this map, the structural effect of substitutions is well understood, but models usually assume a constant sequence length and do not consider insertions or deletions. Here, we expand the sequence–structure map to include single nucleotide insertions and deletions by using the RNAshapes concept. To quantify the structural effect of insertions and deletions, we generalize existing definitions for robustness and non-neutral mutation probabilities. We find striking similarities between substitutions, deletions and insertions: robustness to substitutions is correlated with robustness to insertions and, for most structures, to deletions. In addition, frequent structural changes after substitutions also tend to be common for insertions and deletions. This is consistent with the connection between energetically suboptimal folds and possible structural transitions. The similarities observed hold both for genotypic and phenotypic robustness and mutation probabilities, i.e. for individual sequences and for averages over sequences with the same structure. Our results could have implications for the rate of neutral and non-neutral evolution.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1368
Author(s):  
Ehiole Akhirome ◽  
Suk D. Regmi ◽  
Rachel A. Magnan ◽  
Nelson Ugwu ◽  
Yidan Qin ◽  
...  

In newborns, severe congenital heart defects are rarer than mild ones. This epidemiological relationship between heart defect severity and incidence lacks explanation. Here, an analysis of ~10,000 Nkx2-5+/− mice from two inbred strain crosses illustrates the fundamental role of epistasis. Modifier genes raise or lower the risk of specific defects via pairwise (G×GNkx) and higher-order (G×G×GNkx) interactions with Nkx2-5. Their effect sizes correlate with the severity of a defect. The risk loci for mild, atrial septal defects exert predominantly small G×GNkx effects, while the loci for severe, atrioventricular septal defects exert large G×GNkx and G×G×GNkx effects. The loci for moderately severe ventricular septal defects have intermediate effects. Interestingly, G×G×GNkx effects are three times more likely to suppress risk when the genotypes at the first two loci are from the same rather than different parental inbred strains. This suggests the genetic coadaptation of interacting G×G×GNkx loci, a phenomenon that Dobzhansky first described in Drosophila. Thus, epistasis plays dual roles in the pathogenesis of congenital heart disease and the robustness of cardiac development. The empirical results suggest a relationship between the fitness cost and genetic architecture of a disease phenotype and a means for phenotypic robustness to have evolved.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kenji Okubo ◽  
Kunihiko Kaneko

Abstract Background Mendelian inheritance is a fundamental law of genetics. When we consider two genomes in a diploid cell, a heterozygote’s phenotype is dominated by a particular homozygote according to the law of dominance. Classical Mendelian dominance is concerned with which proteins are dominant, and is usually based on simple genotype–phenotype relationship in which one gene regulates one phenotype. However, in reality, some interactions between genes can exist, resulting in deviations from Mendelian dominance. Whether and how Mendelian dominance is generalized to the phenotypes of gene expression determined by gene regulatory networks (GRNs) remains elusive. Results Here, by using the numerical evolution of diploid GRNs, we discuss whether the dominance of phenotype evolves beyond the classical Mendelian case of one-to-one genotype–phenotype relationship. We examine whether complex genotype–phenotype relationship can achieve Mendelian dominance at the expression level by a pair of haplotypes through the evolution of the GRN with interacting genes. This dominance is defined via a pair of haplotypes that differ from each other but have a common phenotype given by the expression of target genes. We numerically evolve the GRN model for a diploid case, in which two GRN matrices are added to give gene expression dynamics and simulate evolution with meiosis and recombination. Our results reveal that group Mendelian dominance evolves even under complex genotype–phenotype relationship. Calculating the degree of dominance shows that it increases through the evolution, correlating closely with the decrease in phenotypic fluctuations and the increase in robustness to initial noise. We also demonstrate that the dominance of gene expression patterns evolves concurrently. This evolution of group Mendelian dominance and pattern dominance is associated with phenotypic robustness against meiosis-induced genome mixing, whereas sexual recombination arising from the mixing of genomes from the parents further enhances dominance and robustness. Due to this dominance, the robustness to genetic differences increases, while optimal fitness is sustained to a significant difference between the two genomes. Conclusion Group Mendelian dominance and gene-expression pattern dominance are achieved associated with the increase in phenotypic robustness to noise.


2021 ◽  
Author(s):  
Elizabeth Jewlal ◽  
Kevin Barr ◽  
Dale W. Laird ◽  
Katherine E. Willmore

Author(s):  
Mark Hintze ◽  
Dimitris Katsanos ◽  
Vahid Shahrezaei ◽  
Michalis Barkoulas

Individual cells and organisms experience perturbations from internal and external sources, yet manage to buffer these to produce consistent phenotypes, a property known as robustness. While phenotypic robustness has often been examined in unicellular organisms, it has not been sufficiently studied in multicellular animals. Here, we investigate phenotypic robustness in Caenorhabditis elegans seam cells. Seam cells are stem cell-like epithelial cells along the lateral edges of the animal, which go through asymmetric and symmetric divisions contributing cells to the hypodermis and neurons, while replenishing the stem cell reservoir. The terminal number of seam cells is almost invariant in the wild-type population, allowing the investigation of how developmental precision is achieved. We report here that a loss-of-function mutation in the highly conserved N-acetyltransferase nath-10/NAT10 increases seam cell number variance in the isogenic population. RNA-seq analysis revealed increased levels of mRNA transcript variability in nath-10 mutant populations, which may have an impact on the phenotypic variability observed. Furthermore, we found disruption of Wnt signaling upon perturbing nath-10 function, as evidenced by changes in POP-1/TCF nuclear distribution and ectopic activation of its GATA transcription factor target egl-18. These results highlight that NATH-10/NAT-10 can influence phenotypic variability partly through modulation of the Wnt signaling pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thanakorn Jaemthaworn ◽  
Saowalak Kalapanulak ◽  
Treenut Saithong

AbstractRobustness, a naïve property of biological systems, enables organisms to maintain functions during perturbation and is crucial for improving the resilience of crops to prevailing stress conditions and diseases, guaranteeing food security. Most studies of robustness in crops have focused on genetic superiority based upon individual genes, overlooking the collaborative actions of multiple responsive genes and the regulatory network topology. This research aims to uncover patterns of gene cooperation leading to organismal robustness by studying the topology of gene co-expression networks (GCNs) of both CBSV virus resistant and susceptible cassava cultivars. The resulting GCNs show higher topological clustering of cooperative genes in the resistant cultivar, suggesting that the network architecture is central to attaining robustness. Despite a reduction in the number of hub genes in the resistant cultivar following the perturbation, essential biological functions contained in the network were maintained through neighboring genes that withstood the shock. The susceptible cultivar seemingly coped by inducing more gene actions in the network but could not maintain the functions required for plant growth. These findings underscore the importance of regulatory network architecture in ensuring phenotypic robustness and deepen our understanding of transcriptional regulation.


2021 ◽  
Author(s):  
Magda Zachara ◽  
Pernille Y. Rainer ◽  
Julie M. Russeil ◽  
Horia Hashimi ◽  
Daniel Alpern ◽  
...  

AbstractAdipose stem and precursor cells (ASPCs) give rise to adipocytes and determine the composition and plasticity of adipose tissue. Recently, several studies have demonstrated that ASPCs partition into at least three distinct cell subpopulations: Dpp4+ stem-like cells, Aoc3+ pre-adipocyte-like cells, and the enigmatic CD142+ cells. A great challenge now is to functionally characterize these distinct ASPC populations. Here, we focus on CD142+ ASPCs since discrepant properties have been assigned to this subpopulation, from adipogenic to non- and even anti-adipogenic. To address these inconsistencies, we comprehensively characterized mammalian subcutaneous CD142+ ASPCs across various sampling conditions. Our findings demonstrate that CD142+ ASPCs exhibit high molecular and phenotypic robustness, firmly supporting their non- and anti-adipogenic properties. However, these properties emerge in an age-dependent manner, revealing surprising temporal CD142+ ASPC behavioural alterations. Finally, using multi-omic and functional assays, we show that the inhibitory nature of these adipogenesis-regulatory CD142+ ASPCs (Aregs) is driven by specifically expressed secretory factors that cooperate with the retinoic acid signalling pathway to transform the adipogenic state of CD142− ASPCs into a non-adipogenic, Areg-like one.


2021 ◽  
Author(s):  
Kenji Okubo ◽  
Kunihiko Kaneko

Abstract Background: Mendelian inheritance is a fundamental law of genetics. Considering two alleles in a diploid, a phenotype of a heterotype is dominated by a particular homotype according to the law of dominance. This picture is usually based on simple genotype-phenotype mapping in which one gene regulates one phenotype. However, in reality, some interactions between genes can result in deviation from Mendelian dominance. Result: Here, by using the numerical evolution of diploid gene regulatory networks (GRNs), we discuss whether Mendelian dominance evolves beyond the classical case of one-to-one genotype-phenotype mapping. We examine whether complex genotype-phenotype mapping can achieve Mendelian dominance through the evolution of the GRN with interacting genes. Specifically, we extend the GRN model to a diploid case, in which two GRN matrices are added to give gene expression dynamics, and simulate evolution with meiosis and recombination. Our results reveal that Mendelian dominance evolves even under complex genotype-phenotype mapping. This dominance is achieved via a group of genotypes that differ from each other but have a common phenotype given by the expression of target genes. Calculating the degree of dominance shows that it increases through the evolution, correlating closely with the decrease in phenotypic fluctuations and the increase in robustness to initial noise. This evolution of Mendelian dominance is associated with phenotypic robustness against meiosis-induced genome mixing, whereas sexual recombination arising from the mixing of chromosomes from the parents further enhances dominance and robustness. Owing to this dominance, the robustness to genetic differences increases, while the optimal fitness is sustained up to a large difference between the two genomes. Conclusion: Mendelian dominance is achieved by groups of genotypes that are associated with the increase in phenotypic robustness to noise.


Sign in / Sign up

Export Citation Format

Share Document