Irisin is a myokine derived from the cleavage of fibronectin type III domain-containing 5. Irisin regulates mitochondrial energy, glucose metabolism, fatty acid oxidation, and fat browning. Skeletal muscle and cardiomyocytes produce irisin and affect various cardiovascular functions. In the early phase of acute myocardial infarction, an increasing irisin level can reduce endothelial damage by inhibiting inflammation and oxidative stress. By contrast, higher levels of irisin in the later phase of myocardial infarction are associated with more cardiovascular events. During different stages of heart failure, irisin has various influences on mitochondrial dysfunction, oxidative stress, metabolic imbalance, energy expenditure, and heart failure prognosis. Irisin affects blood pressure and controls hypertension through modulating vasodilatation. Moreover, irisin can enhance vasoconstriction via the hypothalamus. Because of these dual effects of irisin on cardiovascular physiology, irisin can be a critical therapeutic target in cardiovascular diseases. This review focuses on the complex functions of irisin in myocardial ischemia, heart failure, and cardiac hypertrophy.