natural emissions
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 26)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 21 (23) ◽  
pp. 18101-18121
Author(s):  
Sabour Baray ◽  
Daniel J. Jacob ◽  
Joannes D. Maasakkers ◽  
Jian-Xiong Sheng ◽  
Melissa P. Sulprizio ◽  
...  

Abstract. Methane emissions in Canada have both anthropogenic and natural sources. Anthropogenic emissions are estimated to be 4.1 Tg a−1 from 2010–2015 in the National Inventory Report submitted to the United Nation's Framework Convention on Climate Change (UNFCCC). Natural emissions, which are mostly due to boreal wetlands, are the largest methane source in Canada and highly uncertain, on the order of ∼ 20 Tg a−1 in biosphere process models. Aircraft studies over the last several years have provided “snapshot” emissions that conflict with inventory estimates. Here we use surface data from the Environment and Climate Change Canada (ECCC) in situ network and space-borne data from the Greenhouse Gases Observing Satellite (GOSAT) to determine 2010–2015 anthropogenic and natural methane emissions in Canada in a Bayesian inverse modelling framework. We use GEOS-Chem to simulate anthropogenic emissions comparable to the National Inventory and wetlands emissions using an ensemble of WetCHARTS v1.0 scenarios in addition to other minor natural sources. We conduct a comparative analysis of the monthly natural emissions and yearly anthropogenic emissions optimized by surface and satellite data independently. Mean 2010–2015 posterior emissions using ECCC surface data are 6.0 ± 0.4 Tg a−1 for total anthropogenic and 11.6 ± 1.2 Tg a−1 for total natural emissions. These results agree with our posterior emissions of 6.5 ± 0.7 Tg a−1 for total anthropogenic and 11.7 ± 1.2 Tg a−1 for total natural emissions using GOSAT data. The seasonal pattern of posterior natural emissions using either dataset shows slower to start emissions in the spring and a less intense peak in the summer compared to the mean of WetCHARTS scenarios. We combine ECCC and GOSAT data to characterize limitations towards sectoral and provincial-level inversions. We estimate energy + agriculture emissions to be 5.1 ± 1.0 Tg a−1, which is 59 % higher than the national inventory. We attribute 39 % higher anthropogenic emissions to Western Canada than the prior. Natural emissions are lower across Canada. Inversion results are verified against independent aircraft data and surface data, which show better agreement with posterior emissions. This study shows a readjustment of the Canadian methane budget is necessary to better match atmospheric observations with lower natural emissions partially offset by higher anthropogenic emissions.


Author(s):  
Euan G. Nisbet ◽  
Edward J. Dlugokencky ◽  
Rebecca E. Fisher ◽  
James L. France ◽  
David Lowry ◽  
...  

The causes of methane's renewed rise since 2007, accelerated growth from 2014 and record rise in 2020, concurrent with an isotopic shift to values more depleted in 13 C, remain poorly understood. This rise is the dominant departure from greenhouse gas scenarios that limit global heating to less than 2°C. Thus a comprehensive understanding of methane sources and sinks, their trends and inter-annual variations are becoming more urgent. Efforts to quantify both sources and sinks and understand latitudinal and seasonal variations will improve our understanding of the methane cycle and its anthropogenic component. Nationally declared emissions inventories under the UN Framework Convention on Climate Change (UNFCCC) and promised contributions to emissions reductions under the UNFCCC Paris Agreement need to be verified independently by top-down observation. Furthermore, indirect effects on natural emissions, such as changes in aquatic ecosystems, also need to be quantified. Nitrous oxide is even more poorly understood. Despite this, options for mitigating methane and nitrous oxide emissions are improving rapidly, both in cutting emissions from gas, oil and coal extraction and use, and also from agricultural and waste sources. Reductions in methane and nitrous oxide emission are arguably among the most attractive immediate options for climate action. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4101
Author(s):  
Alessandro Lenzi ◽  
Marco Paci ◽  
Geoffrey Giudetti ◽  
Roberto Gambini

The impact of natural CO2 emissions in the development of geothermal areas is presently gaining more attention than ever before. In Italian geothermal fields, a reduction in the natural CO2 emissions has been observed. This paper reviews and provides an analysis of the historical production data of boric acid from 1818 to 1867 used to calculate the natural emissions of CO2 associated with boric acid production that pre-dates the use of geothermal resources for power production, which started in 1913. Boric acid was already being extracted from the natural geothermal fluids in geysers and natural ponds emitting steam and gases. After 1827 the ‘lagone coperto’ (covered lake) equipment optimized production, and the drilling of shallow wells (20–30 m) starting in 1836, which further increased the quantity of its extraction. The first geothermal reservoir was developed at the turn of the century and the Larderello geothermal field began to grow. The use of deep wells, keeping pace with the power production, led to the gradual disappearance of the natural ponds and the ‘lagoni’ (lakes) in the historical area, so the residual natural emission of CO2 is presently restricted to diffuse soil emission. Comparisons of the ancient CO2 emissions with those of the Geothermal Power Plant (GPP) in the Larderello area show that both amounts are in the same order of magnitude, suggesting a balance between the depletion of natural emissions and geothermal activity.


2021 ◽  
Vol 8 (1) ◽  
pp. 15
Author(s):  
Serafim Kontos ◽  
Dafni Parliari ◽  
Sofia Papadogiannaki ◽  
Dimitrios Melas

In this study the exposure levels from Quercus pollen in the greater area of Thessaloniki are estimated. The estimation is implemented with a modeling system, comprising the meteorological model WRF, the Natural Emissions Model (NEMO) for the calculation of the Quercus pollen emissions and the chemistry-transport model CAMx for the advection and the deposition of the pollen particles. The period of 2016 with the highest potential is selected, based on the available measurements for the area of interest. The modeling system is evaluated with meteorological and pollen measurements, as well on the expected exposure levels, indicating a satisfactory overall performance. The modeling system is finally utilized for the estimation of exposure levels in the greater area of Thessaloniki, showing that the city of is not going to experience significant number of days with high Quercus pollen concentrations, although other, smaller cities and towns might be affected.


2021 ◽  
Vol 13 (5) ◽  
pp. 2307-2362
Author(s):  
Ana Maria Roxana Petrescu ◽  
Chunjing Qiu ◽  
Philippe Ciais ◽  
Rona L. Thompson ◽  
Philippe Peylin ◽  
...  

Abstract. Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27 + UK). We integrate recent emission inventory data, ecosystem process-based model results and inverse modeling estimates over the period 1990–2017. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported to the UN climate convention UNFCCC secretariat in 2019. For uncertainties, we used for NGHGIs the standard deviation obtained by varying parameters of inventory calculations, reported by the member states (MSs) following the recommendations of the IPCC Guidelines. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model-specific uncertainties when reported. In comparing NGHGIs with other approaches, a key source of bias is the activities included, e.g., anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011–2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr−1 (EDGAR v5.0) and 19.0 Tg CH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr−1. The estimates of TD total inversions give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher-resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr−1. Coarser-resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4 yr−1) and surface network (24.4 Tg CH4 yr−1). The magnitude of natural peatland emissions from the JSBACH–HIMMELI model, natural rivers and lakes emissions, and geological sources together account for the gap between NGHGIs and inversions and account for 5.2 Tg CH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr−1, respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr−1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr−1, respectively. The TD and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at the EU+UK scale and at the national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4590875 (Petrescu et al., 2020b).


2021 ◽  
Author(s):  
Zhicong Yin ◽  
Yu Wan ◽  
Huijun Wang

Abstract. Severe surface ozone (O3) pollution frequently occurred in North China and obviously damages human health and ecosystems. The meteorological conditions effectively modulate the variations in O3 pollution. In this study, the interannual relationship between O3-related meteorology and late-spring snow cover in West Siberia was explored, and the reasons of its decadal change were also physically explained. Before mid-1990s, less snow cover could enhance net heat flux and stimulate positive phase of the Eurasia (EU) teleconnection in summer. The positive EU pattern resulted in hot-dry air and intense solar radiation in North China, which could enhance the natural emissions of O3 precursors and photochemical reactions in the atmosphere closely related to high O3 concentrations. However, after the mid-1990s, the south edge of the dense snow cover area in West Siberia shifted northward by approximately 2° in latitude and accompanied radiation and heat flux also retreated toward the polar region. The connections among snow anomalies, EU pattern and surface O3 became insignificant and thus influenced the stability of the predictability.


2021 ◽  
Author(s):  
Ondrej Santolik ◽  
William S. Kurth ◽  
Craig A. Kletzing

<p>Whistler-mode electromagnetic waves, especially natural emissions of chorus and hiss, have been shown to transfer energy between different electron populations in the inner magnetosphere via quasi-linear or nonlinear wave particle interactions. Average or median intensities of chorus and hiss emissions have been found to increase with increasing levels of geomagnetic activity but their stochastic variations in individual spacecraft measurements at the same location are usually comparable to these large-scale temporal effects. Statistical properties of variations of wave power directly influence results of quasi-linear diffusion models.<br><br>We use the survey measurements of the Waves instruments of the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard two Van Allen Probes to asses the probability distribution function of these stochastic variations. We take advantage of the entire data set of these measurements with a nearly 100% coverage from August 31, 2012 till October 13, 2019 (2600 days) for spacecraft A, and from  September 1, 2012 till July 16, 2019 (2510 days) for spacecraft B. </p>


2021 ◽  
Author(s):  
Sabour Baray ◽  
Daniel J. Jacob ◽  
Joannes D. Massakkers ◽  
Jian-Xiong Sheng ◽  
Melissa P. Sulprizio ◽  
...  

Abstract. Methane emissions in Canada have both anthropogenic and natural sources. Anthropogenic emissions are estimated to be 4.1 Tg a−1 from 2010–2015 in the Canadian Greenhouse Gas Inventory. Natural emissions, which are mostly due to Boreal wetlands, are the largest methane source in Canada and highly uncertain, on the order of ~20 Tg a−1 in biosphere process models. Top-down constraints on Canadian methane emissions using atmospheric observations have been limited by the sparse coverage of both surface and satellite observations. Aircraft studies over the last several years have provided snapshot emissions that have been conflicting with inventory estimates. Here we use surface data from the Environment and Climate Change Canada (ECCC) in situ network and space borne data from the Greenhouse Gases Observing Satellite (GOSAT) to determine 2010–2015 anthropogenic and natural methane emissions in Canada in a Bayesian inverse modelling framework. We use GEOS-Chem to simulate anthropogenic emissions comparable to the Canadian inventory and wetlands emissions using an ensemble of WetCHARTS v1.0 scenarios in addition to other minor natural sources. We conduct a comparative analysis of the monthly natural emissions and yearly anthropogenic emissions optimized by surface and satellite data independently. Mean 2010–2015 posterior emissions using ECCC surface data are 6.0 ± 0.4 Tg a−1 for total anthropogenic and 10.5 ± 1.9 Tg a−1 for total natural emissions, where the error intervals represent the 1-σ spread in yearly posterior results. These results agree with our posterior using GOSAT data of 6.5 ± 0.7 Tg a−1 for total anthropogenic and 11.7 ± 1.2 Tg a−1 for total natural emissions. The seasonal pattern of posterior natural emissions using either dataset shows slower to start emissions in the spring and a less intense peak in the summer compared to the mean of WetCHARTS scenarios. We combine ECCC and GOSAT data to evaluate capabilities for sectoral and provincial level inversions and identify limitations. We estimate Energy + Agriculture emissions to be 5.1 ± 1.0 Tg a−1 which is 59 % higher than the National GHG Inventory. We attribute 39 % higher anthropogenic emissions to Western Canada than the prior. Natural emissions are lower across Canada with large downscaling in the Hudson Bay Lowlands. Inversion results are verified against independent aircraft data in Saskatchewan and surface data in Quebec which show better agreement with posterior emissions. This study shows a readjustment of the Canadian methane budget is necessary to better match atmospheric observations with higher anthropogenic emissions partially offset by lower natural emissions.


Sign in / Sign up

Export Citation Format

Share Document