normal atmospheric pressure
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
pp. 2565-2570
Author(s):  
Neean F. Majeed ◽  
Maysaa R. Naeemah ◽  
Alyaa H. Ali ◽  
Sabah N. Mazhir

     In the current study, the emission spectra generated from clove were measured under normal atmospheric pressure with different laser energies. Clove is used as a source of essential oil in herbal medicine, in particular as a dynamic analgesic oil in dental and other diseases. For aromatherapy, Antiseptic, antiviral, and antimicrobial agents are also packaged with cloves. Compounds that reduce inflammation tend to battle sore throats, cold, and cough as they display so many advantages. The measured spectrum reveals distinctive lines of clove’s chemical elements. X-ray fluorescent (XRF) and atomic absorption spectrometry (AAS) were used to measure the spectrum generated or absorbed by detecting the presence of various elements and their ratios in the cloves, for different energy the electron temperature varies between 0.043 and 0.073 eV and the number of electron varied between 2.074 and 2.287) x1014 cm-3 for clove.


2021 ◽  
Vol 25 (4) ◽  
pp. 52-58
Author(s):  
D.I. Potapov ◽  
◽  
I.V. Gorepyokin ◽  
G.N. Fedotov ◽  
V.S. Shalaev ◽  
...  

The search for approaches to assessment the water resistance of soil aggregates is conducted using the modified Andrianov method. It is shown that the kinetic equation of the first-order reaction could be applied to describe the aggregates destruction in standing water. Methods of formal kinetics at the same time are just partially applicable for the description of soil aggregates destruction because of a significant change in the reaction rate constant over time. In particular, the average constant of reaction rate is convenient for water resistance comparison of different aggregates samples. It is established that the main factors that determine the speed of aggregate destruction are trapped air, gases produced by anaerobic microorganisms as well as intra-aggregate connections and the velocity of water entering the aggregates. In the course of the conducted experiments, it is shown that water resistance assessment should perform on wet aggregates under the normal atmospheric pressure. It allows neutralizing the influence of trapped gases of microbial origin and providing the domination of intra-aggregate connections that sustain water resistance in wet aggregates of real soils.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Izabela Anna Chincinska

AbstractThe penetration of substances from the surface to deep inside plant tissues is called infiltration. Although various plant tissues may be effectively saturated with externally applied fluid, most described infiltration strategies have been developed for leaves. The infiltration process can be spontaneous (under normal atmospheric pressure) or forced by a pressure difference generated between the lamina surface and the inside of the leaf. Spontaneous infiltration of leaf laminae is possible with the use of liquids with sufficiently low surface tension. Forced infiltration is most commonly performed using needle-less syringes or vacuum pumps.Leaf infiltration is widely used in plant sciences for both research and application purposes, usually as a starting technique to obtain plant material for advanced experimental procedures. Leaf infiltration followed by gentle centrifugation allows to obtain the apoplastic fluid for further analyses including various omics. In studies of plant-microorganism interactions, infiltration is used for the controlled introduction of bacterial suspensions into leaf tissues or for the isolation of microorganisms inhabiting apoplastic spaces of leaves. The methods based on infiltration of target tissues allow the penetration of dyes, fixatives and other substances improving the quality of microscopic imaging. Infiltration has found a special application in plant biotechnology as a method of transient transformation with the use of Agrobacterium suspension (agroinfiltration) enabling genetic modifications of mature plant leaves, including the local induction of mutations using genome editing tools. In plant nanobiotechnology, the leaves of the target plants can be infiltrated with suitably prepared nanoparticles, which can act as light sensors or increase the plant resistance to environmental stress. In addition the infiltration has been also intensively studied due to the undesirable effects of this phenomenon in some food technology sectors, such as accidental contamination of leafy greens with pathogenic bacteria during the vacuum cooling process.This review, inspired by the growing interest of the scientists from various fields of plant science in the phenomenon of infiltration, provides the description of different infiltration methods and summarizes the recent applications of this technique in plant physiology, phytopathology and plant (nano-)biotechnology.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xuefeng Li ◽  
Pengyu Yang

The effect of low atmospheric pressure of the environment on the air content and bubble stability of air-entrained concrete was investigated in Beijing and Lhasa. The results indicate that the reduction of atmospheric pressure can weaken the air-entraining capability of air-entraining agents (AEAs). The air content of fresh concrete decreased by 9%–39% when the atmospheric pressure dropped to 64 kPa. The bubble stability of concrete mixed at a low atmospheric pressure becomes worse. Within 50–55 min after mixing, the air content of concrete mixed at a low atmospheric pressure decreases greatly, and the void spacing factor increases obviously. The concrete mixed at a low atmospheric pressure will lose more air content when vibration time increases, leading to the decrease of air content and the increase of the spacing factor, which are more significant than the concrete mixed at normal atmospheric pressure. On the basis of the experiment results in this study, the type of AEAs must be carefully selected, and the vibration time must be strictly controlled to ensure that the air content of concrete will meet the design requirements in low atmospheric pressure areas.


Healthcare ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 768
Author(s):  
Maryam Shahnavazi ◽  
Behzad Salari ◽  
Reza Fekrazad

Persistent pressure change is a common phenomenon within scuba diving with various medical and dental sign side effects. This study evaluates the effect of simulated pressure change due to scuba diving on the microleakage of class II composite restoration. In our methodology, a total number of 150 intact bicuspids are divided into two main groups (A and B), and prepared for a class II composite restoration. The samples of each main group are divided into five subgroups to be prepared with different liners. Then samples are restored with the same resin composite material. The teeth in group A are thermocycled under the normal atmospheric pressure, while group B are thermocycled under simulated scuba diving conditions. The gingival microleakage is assessed based on dye penetration. The group B teeth show a significantly higher microleakage score than their equivalents in group A (p < 0.05). The subgroups without a liner have a higher microleakage score than the other subgroups (p < 0.05). The flowable composite shows the leased leakage scores followed by Nano ionomer, Resin Modified Glass Iononomer, GIOMER, and linerless groups (p < 0.05). Scuba diving could increase the risk of microleakage development beneath class II, a composite restoration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Reza Khosravi-Nikou ◽  
Mohammad Hadi Safari ◽  
Amir Asadi Rad ◽  
Pouya Hassani ◽  
Mohammad Mohammadian ◽  
...  

AbstractIn this study, a modified mesoporous adsorbent (MSU-S) impregnated by aluminum was used to remove the aromatic sulfur compounds from n-decane as the model fuel. Physical and chemical properties of as-synthesized adsorbent were investigated by XRD (X-Ray Diffraction), SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy) and BET (Brunauer–Emmett–Teller) method. Adsorptive desulfurization of model fuel was studied through batch and continues processes under mild temperature and normal atmospheric pressure. The equilibrium adsorption was modeled by Langmuir, Temkin, and Freundlich and the kinetics of adsorption was studied through first, second and intraparticle diffusion models. It was figured out that Temkin and the pseudo-second-order model were best fitting the adsorption equilibrium and describing the kinetics, respectively.


2020 ◽  
Vol 05 (02) ◽  
pp. 1-1
Author(s):  
Ji-Jie Pang ◽  
◽  
Samuel M. Wu ◽  

We studied how GC death in glaucoma related to the intraocular pressure (IOP), eyeball volume (VS) and elasticity (volumetric KS and tensile ES), and eyeball volume-pressure relation. Glaucomatous GC loss was studied in DBA/2J (D2) mice with wild-type mice as controls. GCs were retrogradely identified and observed with a confocal microscope. The elasticity calculation was also done on published data from patients treated by a gas bubble injection in the vitreous cavity. The GC population in D2 mice (1.5- to 14-month-old) was negatively correlated with following factors: VS (p = 0.0003), age (p = 0.0026) and IOP (but p = 0.0966). As indicated by average values, adult D2 mice (³6 months) suffered significant GC loss, low KS and ES, and universal expansion of VS with normal IOP. KS and ES in the patients were also lower upon prolonged eyeball expansion compared to acute expansion. Based on the results and presumptions of a closed and continuous eyeball space (thereby ΔVS » ΔVW, ΔVW-the change in the aqueous humor amount), we deduced equations on the ocular volume-pressure relationship: ΔIOP = KS*ΔVW/VS or ΔIOP = (2/3)*[1/(1-n)]*(H/R)*ES*ΔVW/VS (n, Poisson’s ratio taken as 0.5; R, the curvature radius; and H, the shell thickness). Under normal atmospheric pressure, IOP of 10~50 mmHg contributed only 1.2~6.6% of the pressure opposing the retina and eyeball shell. We conclude: 1) A disturbance of ocular volume-pressure homeostasis, mediated primarily by low KS and ES, expanded VS, and large ΔVW, is correlated with GC death in glaucoma and 2) D2 mice with GC loss and normal IOP may serve as animal models for human normal-tension glaucoma.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 402
Author(s):  
Jiawei Li ◽  
Yuan He ◽  
Yanan Sun ◽  
Xiuming Zhang ◽  
Wei Shi ◽  
...  

The vapor phase polymerization (VPP) method is a conventional strategy for synthesizing conducting polymers (CPs) on the surfaces of various materials. However, the current VPP method performed on a metal surface usually requires harsh reaction conditions, such as high temperature and low vacuum. In this paper, a polypyrrole (PPy) and vanadium pentoxide (V2O5) composite film was synthesized on the surface of Mg using a mild VPP method. Here, V2O5 was used as an oxidant, and it was found that the oxidation of pyrrole (Py) vapor on the surface of V2O5, which had been previously coated on the surface of Mg, could be performed at room temperature under normal atmospheric pressure. The formation of the PPy/V2O5 composite was verified by Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray (EDX) spectroscopy. A thermogravimetric analyzer (TGA) was used to study the thermal stability of the composite. Subsequent corrosion tests showed that the PPy/V2O5 composite film could slow down the corrosion of Mg in 3.5 wt% NaCl. It is expected that the mild VPP method may find great potential in the fields of synthesis of CPs and the corrosion protection of reactive metals.


2020 ◽  
Vol 28 (4) ◽  
pp. 236-242
Author(s):  
Shenlong Zha ◽  
Hongliang Ma ◽  
Changli Zha ◽  
Xueyuan Cai ◽  
Yuanyuan Li ◽  
...  

A novel photoacoustic spectroscopy gas sensor based on a micro-resonator has been developed. The photoacoustic cell was designed and fabricated using 3-D printing and the photoacoustic cell volume was compressed significantly. This design greatly reduces the time of manufacturing the micro-resonator and the weight was lighter compared to traditional cells. Furthermore, the acoustic pressure distribution in the 3-D printed photoacoustic cell was analyzed by COMSOL Multiphysics software, which indicated that the strongest acoustic pressure occurred in the middle of the resonant cavity. The performance of the sensor was evaluated by detection of CH4 at normal atmospheric pressure used a near infrared distributed feedback laser emitted at 1653 nm. The characteristic of the photoacoustic signal under different pressures was also investigated. An Allan variance shows that the 3-D printed photoacoustic spectroscopy sensor has the detection limit of 1.44 ppmv (3σ) for CH4 detection at about 200 s integration time.


2020 ◽  
Vol 191 ◽  
pp. 105234 ◽  
Author(s):  
Xinrui Zhu ◽  
Xuheng Liu ◽  
Zhongwei Zhao ◽  
Xingyu Chen ◽  
Jiangtao Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document