synaptic homeostasis
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 35)

H-INDEX

26
(FIVE YEARS 3)

PLoS Biology ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. e3001432
Author(s):  
Balakumar Srinivasan ◽  
Sarbani Samaddar ◽  
Sivaram V. S. Mylavarapu ◽  
James P. Clement ◽  
Sourav Banerjee

Homeostatic scaling in neurons has been attributed to the individual contribution of either translation or degradation; however, there remains limited insight toward understanding how the interplay between the two processes effectuates synaptic homeostasis. Here, we report that a codependence between protein synthesis and degradation mechanisms drives synaptic homeostasis, whereas abrogation of either prevents it. Coordination between the two processes is achieved through the formation of a tripartite complex between translation regulators, the 26S proteasome, and the miRNA-induced silencing complex (miRISC) components such as Argonaute, MOV10, and Trim32 on actively translating transcripts or polysomes. The components of this ternary complex directly interact with each other in an RNA-dependent manner. Disruption of polysomes abolishes this ternary interaction, suggesting that translating RNAs facilitate the combinatorial action of the proteasome and the translational apparatus. We identify that synaptic downscaling involves miRISC remodeling, which entails the mTORC1-dependent translation of Trim32, an E3 ligase, and the subsequent degradation of its target, MOV10 via the phosphorylation of p70 S6 kinase. We find that the E3 ligase Trim32 specifically polyubiquitinates MOV10 for its degradation during synaptic downscaling. MOV10 degradation alone is sufficient to invoke downscaling by enhancing Arc translation through its 3′ UTR and causing the subsequent removal of postsynaptic AMPA receptors. Synaptic scaling was occluded when we depleted Trim32 and overexpressed MOV10 in neurons, suggesting that the Trim32-MOV10 axis is necessary for synaptic downscaling. We propose a mechanism that exploits a translation-driven protein degradation paradigm to invoke miRISC remodeling and induce homeostatic scaling during chronic network activity.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Theresa Pohlkamp ◽  
Xunde Xian ◽  
Connie H Wong ◽  
Murat S Durakoglugil ◽  
Gordon Chandler Werthmann ◽  
...  

Apolipoprotein E4 (ApoE4) is the most important and prevalent risk factor for late-onset Alzheimer's disease (AD). The isoelectric point of ApoE4 matches the pH of the early endosome (EE), causing its delayed dissociation from ApoE receptors and hence impaired endolysosomal trafficking, disruption of synaptic homeostasis and reduced amyloid clearance. We have shown that enhancing endosomal acidification by inhibiting the EE-specific sodium-hydrogen exchanger 6 (NHE6) restores vesicular trafficking and normalizes synaptic homeostasis. Remarkably and unexpectedly, loss of NHE6 (encoded by the gene Slc9a6) in mice effectively suppressed amyloid deposition even in the absence of ApoE4, suggesting that accelerated acidification of early endosomes caused by the absence of NHE6 occludes the effect of ApoE on amyloid plaque formation. NHE6 suppression or inhibition may thus be a universal, ApoE-independent approach to prevent amyloid buildup in the brain. These findings suggest a novel therapeutic approach for the prevention of AD by which partial NHE6 inhibition reverses the ApoE4 induced endolysosomal trafficking defect and reduces plaque load.


2021 ◽  
Author(s):  
Claire Bradley ◽  
Jessica Elliott ◽  
Samuel Dudley ◽  
Genevieve Kieseker ◽  
Jason B Mattingley ◽  
...  

Previous history of activity and learning modulates synaptic plasticity and can lead to saturation of synaptic connections. According to the synaptic homeostasis hypothesis, neural oscillations during slow-wave sleep play an important role in restoring plasticity within a functional range. However, it is not known whether slow-wave oscillations - without the concomitant requirement of sleep - play a causal role in human synaptic homeostasis. Here, slow-oscillatory transcranial alternating current stimulation (tACS, 1Hz, 1mA, 18 minutes) was interleaved between two plasticity-inducing interventions: motor learning, and a paradigm known to induce long-term-potentiation-like plasticity in human motor cortex (paired associative stimulation; PAS). The hypothesis tested was that slow-oscillatory tACS would abolish the expected interference between motor learning and PAS, and facilitate plasticity from successive interventions. Thirty-six participants received sham and active fronto-motor tACS in two separate sessions, along with electroencephalography (EEG) recordings. A further 38 participants received tACS through a control (posterior midline) montage. Using neuro-navigated transcranial magnetic stimulation (TMS) over the left motor cortex, motor evoked potentials (MEPs) were recorded throughout the session. Bayesian statistics were used to quantify evidence for or against the hypothesis of an effect of each intervention on MEP amplitude. As expected, there was converging evidence that motor training increased MEPs. Importantly, we found moderate evidence against an effect of active tACS in restoring PAS plasticity, and no evidence of lasting entrainment of slow-oscillations in the EEG. This suggests that, under the conditions tested here, slow-oscillatory tACS does not modulate synaptic homeostasis in the motor system of awake humans.


2021 ◽  
Vol 22 (18) ◽  
pp. 10145
Author(s):  
Giacomo Siano ◽  
Chiara Falcicchia ◽  
Nicola Origlia ◽  
Antonino Cattaneo ◽  
Cristina Di Primio

Tau plays a central role in a group of neurodegenerative disorders collectively named tauopathies. Despite the wide range of diverse symptoms at the onset and during the progression of the pathology, all tauopathies share two common hallmarks, namely the misfolding and aggregation of Tau protein and progressive synaptic dysfunctions. Tau aggregation correlates with cognitive decline and behavioural impairment. The mechanistic link between Tau misfolding and the synaptic dysfunction is still unknown, but this correlation is well established in the human brain and also in tauopathy mouse models. At the onset of the pathology, Tau undergoes post-translational modifications (PTMs) inducing the detachment from the cytoskeleton and its release in the cytoplasm as a soluble monomer. In this condition, the physiological enrichment in the axon is definitely disrupted, resulting in Tau relocalization in the cell soma and in dendrites. Subsequently, Tau aggregates into toxic oligomers and amyloidogenic forms that disrupt synaptic homeostasis and function, resulting in neuronal degeneration. The involvement of Tau in synaptic transmission alteration in tauopathies has been extensively reviewed. Here, we will focus on non-canonical Tau functions mediating synapse dysfunction.


2021 ◽  
pp. 1-14
Author(s):  
Gianmaria Lorenzo Odierna ◽  
William Donald Phillips

Background In myasthenia gravis, impaired postsynaptic sensitivity to acetylcholine results in failure of neuromuscular transmission and fatiguing muscle weakness. Objective Develop an ex vivo muscle contraction assay to test cannabinoids and other substances that might act on the myasthenic neuromuscular junction to restore control of the muscle. Methods Tubocurarine was added to an ex vivo, mouse phrenic nerve-hemidiaphragm muscle preparation to reduce acetylcholine sensitivity. This produced a myasthenia-like decrement in twitch force during a train of 10 nerve impulses (3 / sec). Endplate potential (EPP) recordings were used to confirm and extend the findings. Results Surprisingly, addition to the bath of dimethylsulphoxide (DMSO), at concentrations as low as 0.1%(v/v), partially reversed the decrement in nerve-evoked force. Intracellular electrophysiology, conducted in the presence of tubocurarine, showed that DMSO increased the amplitudes of both the spontaneous miniature EPP (MEPP) and the (nerve-evoked) EPP. In the absence of tubocurarine (synaptic potentials at physiological levels), an adaptive fall in quantal content negated the DMSO-induced rise in EPP amplitude. The effects of cannabinoid receptor agonists (solubilized with DMSO) in the contraction assay do not support their further exploration as useful therapeutic agents for myasthenia gravis. CP 55,940 (a dual agonist for cannabinoid receptor types 1 and 2) reversed the beneficial effects of DMSO. Conclusions: We demonstrate a powerful effect of DMSO upon quantal amplitude that might mislead pharmacological studies of synaptic function wherever DMSO is used as a drug vehicle. Our results also show that compounds targeting impaired neuromuscular transmission should be tested under myasthenic-like conditions, so as to avoid confounding effects of synaptic homeostasis.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Chin-Hsuan Chia ◽  
Xin-Wei Tang ◽  
Yue Cao ◽  
Hua-Teng Cao ◽  
Wei Zhang ◽  
...  

Sleep is essential in maintaining physiological homeostasis in the brain. While the underlying mechanism is not fully understood, a 'synaptic homeostasis' theory has been proposed that synapses continue to strengthen during awake, and undergo downscaling during sleep. This theory predicts that brain excitability increases with sleepiness. Here, we collected transcranial magnetic stimulation (TMS) measurements in 38 subjects in a 34-hour program, and decoded the relationship between cortical excitability and self-report sleepiness using advanced statistical methods. By utilizing a combination of partial least squares (PLS) regression and mixed-effect models, we identified a robust pattern of excitability changes, which can quantitatively predict the degree of sleepiness. Moreover, we found that synaptic strengthen occurred in both excitatory and inhibitory connections after sleep deprivation. In sum, our study provides supportive evidence for the synaptic homeostasis theory in human sleep and clarifies the process of synaptic strength modulation during sleepiness.


2021 ◽  
Vol 19 ◽  
Author(s):  
Stefani Altenhofen ◽  
Carla Denise Bonan

: Sleep is an evolutionarily conserved phenomenon, being an essential biological necessity for the learning process and memory consolidation. The brain displays two types of electrical activity during sleep: slow-wave activity or non-rapid eye movement (NREM) sleep and desynchronized brain wave activity or rapid eye movement (REM) sleep. There are many theories about “Why we need to sleep?” among them the synaptic homeostasis. This theory proposes that the role of sleep is the restoration of synaptic homeostasis, which is destabilized by synaptic strengthening triggered by learning during waking and by synaptogenesis during development. Sleep diminishes the plasticity load on neurons and other cells to normalize synaptic strength. In contrast, it re-establishes neuronal selectivity and the ability to learn, leading to the consolidation and integration of memories. The use of zebrafish as a tool to assess sleep and its disorders is growing, although sleep in this animal is not yet divided, for example, into REM and NREM states. However, zebrafish are known to have a regulated daytime circadian rhythm. Their sleep state is characterized by periods of inactivity accompanied by an increase in arousal threshold, preference for resting place, and the “rebound sleep effect” phenomenon, which causes an increased slow-wave activity after a forced waking period. In addition, drugs known to modulate sleep, such as melatonin, nootropics, and nicotine, have been tested in zebrafish. In this review, we discuss the use of zebrafish as a model to investigate sleep mechanisms and their regulation, demonstrating this species as a promising model for sleep research.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009045
Author(s):  
Bruno Golosio ◽  
Chiara De Luca ◽  
Cristiano Capone ◽  
Elena Pastorelli ◽  
Giovanni Stegel ◽  
...  

The brain exhibits capabilities of fast incremental learning from few noisy examples, as well as the ability to associate similar memories in autonomously-created categories and to combine contextual hints with sensory perceptions. Together with sleep, these mechanisms are thought to be key components of many high-level cognitive functions. Yet, little is known about the underlying processes and the specific roles of different brain states. In this work, we exploited the combination of context and perception in a thalamo-cortical model based on a soft winner-take-all circuit of excitatory and inhibitory spiking neurons. After calibrating this model to express awake and deep-sleep states with features comparable with biological measures, we demonstrate the model capability of fast incremental learning from few examples, its resilience when proposed with noisy perceptions and contextual signals, and an improvement in visual classification after sleep due to induced synaptic homeostasis and association of similar memories.


Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 233
Author(s):  
Haorong Li ◽  
Martine Uittenbogaard ◽  
Ling Hao ◽  
Anne Chiaramello

Mitochondria are dynamic multitask organelles that function as hubs for many metabolic pathways. They produce most ATP via the oxidative phosphorylation pathway, a critical pathway that the brain relies on its energy need associated with its numerous functions, such as synaptic homeostasis and plasticity. Therefore, mitochondrial dysfunction is a prevalent pathological hallmark of many neurodevelopmental and neurodegenerative disorders resulting in altered neurometabolic coupling. With the advent of mass spectrometry (MS) technology, MS-based metabolomics provides an emerging mechanistic understanding of their global and dynamic metabolic signatures. In this review, we discuss the pathogenetic causes of mitochondrial metabolic disorders and the recent MS-based metabolomic advances on their metabolomic remodeling. We conclude by exploring the MS-based metabolomic functional insights into their biosignatures to improve diagnostic platforms, stratify patients, and design novel targeted therapeutic strategies.


2021 ◽  
Author(s):  
Theresa Pohlkamp ◽  
Xunde Xian ◽  
Connie H Wong ◽  
Murat Durakoglugil ◽  
Takaomi Saido ◽  
...  

ABSTRACTApolipoprotein E4 (ApoE4) is the most important and prevalent risk factor for late-onset Alzheimer’s disease (AD). The isoelectric point of ApoE4 matches the pH of the early endosome (EE), causing its delayed dissociation from ApoE receptors and hence impaired endolysosomal trafficking, disruption of synaptic homeostasis and reduced amyloid clearance. We have shown that enhancing endosomal acidification by inhibiting the EE-specific sodium-hydrogen exchanger NHE6 restores vesicular trafficking and normalizes synaptic homeostasis. Using NHE6 conditional KO mice we now also show that disruption of NHE6 activates the resident microglia and thus reduces early and advanced amyloid plaque formation in humanized APPNL-F knockin mice in the presence or absence of ApoE4 by approximately 80%. These findings suggest a novel therapeutic approach for the prevention of AD by which partial NHE6 inhibition reverses the ApoE4 induced endolysosomal trafficking defect, while at the same time shifting the resident microglia from the dormant, homeostatic to the damage-associated, activated state.


Sign in / Sign up

Export Citation Format

Share Document