winter growth habit
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Mohsen Mohammadi ◽  
Davoud Torkamaneh ◽  
Hamid-Reza Nikkhah

Vernalization requirement is a key component in determining the overall fitness of developmental patterns of barley to its environment. We have used previously reported markers and spring-sown growth habit nursery to characterize the genotypes of barley germplasm in an applied barley breeding ground to establish a baseline of information required to understand the relationship between adaptation of autumn-sown barley germplasm in diverse regions with warm (W), moderate (M), or cold climates (C). This study revealed that twenty entries were detected with the presence of the vernalization critical region in VRN-H1 locus and complete presence of the three geneclusters ZCCT-Ha, -Hb, and -Hc in VRN-H2 locus represented as genotype vrn-H1/Vrn-H2 (V1w/V2w). Of these genotypes, 17 entries showed winter growth habit whereas the remaining three revealed facultative growth habit indicating reduced vernalization requirements possibly due to VRN-H3 and photoperiod sensitivity loci as compared to the landmark winter growth habit entries in this group. Twenty-four entries were detected with the lack of vernalization critical region in VRN-H1 locus but complete presence of the three geneclusters ZCCT-Ha, -Hb, and -Hc in VRN-H2 locus represented as genotype Vrn-H1/Vrn-H2 (V1s/V2w). However, only half of these germplasms were identified with spring growth habit in spring-sown nursery, and the rest of the germplasms in this group revealed facultative growth habits due to possible variation in the length of deletion in VRN-H1. Four germplasms showed vernalization insensitive phenotype due to the lack of a functional ZCCT-Ha and/or ZCCT-Hb alleles in VRN-H2 and the deletion in the vernalization critical region of VRN-H1. These germplasms revealed acomplete spring type growth habit. Only one entry showed reduced vernalization requirement solely due to the deletion in functional ZCCT-Hb allele in VRN-H2 and not due to the deletion in the vernalization critical region of VRN-H1.


2011 ◽  
Vol 9 (2) ◽  
pp. 251-255 ◽  
Author(s):  
Stanislav Kolev ◽  
Dimitar Vassilev ◽  
Kostadin Kostov ◽  
Elena Todorovska

Allele composition at the major growth habit (Ppd-D1, Vrn-1, Rht-1 and Rht8) loci was determined in 52 Bulgarian bread wheat cultivars and landraces, using recently developed diagnostic molecular markers. The study showed that Bulgarian wheat germplasm varies for photoperiod, vernalization and height-reducing genes. The photoperiod-sensitive allele (Ppd-D1b) was the most frequent one in the old cultivars and landraces (90.9%), while the photoperiod-insensitive allele (Ppd-D1a) showed the highest frequency in the modern cultivars (96.71%). The alleles conferring winter growth habit (vrn-A1, vrn-B1 and vrn-D1) were more common in both the old (72.7%) and the modern (93.3%) wheat genotypes. The spring allele Vrn-A1c was not detected in Bulgarian germplasm, while the spring allele Vrn-B1 was found only in the old genotypes (13.6%). The semi-dwarfing allele Rht-B1b was observed in several modern cultivars. Seven allele variants were found in the microsatellite locus Xgwm261, closely located to the Rht8 gene. Among them, alleles of 164, 212 and 216 bp length were specific for the old genotypes studied, while alleles of 192 and 202 bp length were specific for the modern ones. The allele combination Rht-B1b//192 or 202 bp allele (Xgwm261 locus)//Ppd-D1a//vrn-A1/vrn–B1/vrn-D1 was detected in most of the early-heading modern cultivars. Our study emphasizes on the plasticity of the adaptive response of bread wheat cultivars sown in Bulgaria, as well as on the effect of variation for major growth habit on some yield and reproductive characteristics.


2005 ◽  
Vol 110 (8) ◽  
pp. 1458-1466 ◽  
Author(s):  
I. Karsai ◽  
P. Szűcs ◽  
K. Mészáros ◽  
T. Filichkina ◽  
P. M. Hayes ◽  
...  

Plant Disease ◽  
1999 ◽  
Vol 83 (7) ◽  
pp. 644-651 ◽  
Author(s):  
R. P. Singh ◽  
W. Q. Chen ◽  
Z. H. He

Leaf rust, caused by Puccinia triticina, is an important disease of wheat (Triticum aestivum) in China. Sixty-one spring and 102 facultative or winter growth habit wheat cultivars from China and a set of testers, carrying named Lr genes, were evaluated for resistance at the seedling growth stage with an array of Mexican Puccinia triticina races. Variation in seedling infection types of the cultivars was compared with that of the testers, and genes conferring low infection types were postulated. In total, nine named genes, Lr1 (in 13 cultivars), Lr3 (12), Lr3bg (2), Lr10 (1), Lr13 (4), Lr14a (1), Lr16 (49), Lr23 (9), and Lr26 (81), were identified. Thirty-one cultivars displayed intermediate reactions to one or more races that could not be attributed to any named gene. Twenty-eight spring cultivars were also evaluated at two field sites in Mexico using two common races. About half of them displayed good to moderate adult resistance that may be partly due to the presence of slow rusting gene Lr34 in at least seven cultivars. Diversity in adult plant responses of these wheats indicated the presence of additional slow rusting genes. Presence of 1B.1R translocation in 12 wheat cultivars, supposedly derived from intergeneric crosses involving T. durum, Haynaldia villosa, and Avena fatua, indicated that their pedigrees were incorrect.


1986 ◽  
Vol 28 (1) ◽  
pp. 88-95 ◽  
Author(s):  
J. Kuspira ◽  
J. Maclagan ◽  
K. Kerby ◽  
R. N. Bhambhani

The study on the mode of inheritance of spring versus winter growth habit in Triticum monococcum is the first in a diploid wheat species. The results are discussed in light of the information available on the genetics and cytogenetics of this character in Triticum aestivum. Two spring habit and six winter habit lines were used in these investigations. Statistical analyses of progenies in each of these lines clearly established the true-breeding nature of all eight lines with respect to days to heading. Analysis of F1 and F2 results of crosses between the two spring habit lines 68 and 293 showed the following: (i) neither line carries winter habit alleles at any of the major gene loci determining growth habit; and (ii) four of five minor allele pairs determine the phenotypic differences between them. Monohybrid F2 and testcross ratios in crosses between spring habit line 68 and each of the six winter lines lead to the following conclusions: (i) differences between spring and winter growth habit in each cross are due to alleles of one major gene; (ii) the allele for spring habit is completely dominant to that for winter habit in each cross; and (iii) all these lines are genotypically identical or very similar at all modifying gene loci. These results imply that only one major gene determines growth habit in this species. Diallel (critical) crosses among the six recessive lines indicate that complementation does not occur in any of the F1's. Therefore, all these recessive genes represent mutations in the same gene. If these results are characteristic of all winter lines in Triticum monococcum, they permit the initial conclusion that only one major gene determines growth habit in this diploid species. This locus is in all likelihood the VrnI locus since it is the only one of the five major genes identified for growth habit, that is present in the A genome of Triticum aestivum. All six recessive lines respond to natural vernalization. This lends further support to our initial conclusion. Because the six recessive lines head at five different times we conclude that a multiple allelic series occurs at this locus. Specifically, at least three and probably five recessive alleles responsible for different heading dates among the winter lines, and at least one dominant allele for spring habit, occur at this locus.Key words: Triticum, complementation, quantitative, vernalization, alleles, multiple.


1957 ◽  
Vol 37 (3) ◽  
pp. 300-326 ◽  
Author(s):  
John Kuspira ◽  
John Unrau

Three sets of substitution lines of the spring wheat variety Chinese with chromosomes from the donor varieties Thatcher, Hope and Timstein were used to study the genetics of awning, earliness, lodging, plant height, spike density, 1000-kernel weight and yield. The various substitution lines, each representing a genotype that differs from that of the recipient variety only with respect to the genes carried by the substituted chromosome, were studied in replicated field trials so that environmental effects on the character in question could be easily removed by appropriate analysis. This permitted a comparison of the genetic effects of individual chromosomes against the standard based on the performance of a population of like genotypes.Genes conditioning awning were associated with seven chromosomes. Studies of earliness indicated that time of heading is conditioned by (a) major genes that differentiate spring and winter growth habit, and (b) genes that modify the expression of growth habit genes to a greater or lesser extent. Differences in spike density among the lines were due to minor genes only; the same was true for plant height. Lodging, protein content, 1000-kernel weight and yield were found to be conditioned by polymeric or multiple genes on many chromosomes; the effects of these individual genes though small were not usually equal.Where a substituted chromosome brings about a significant departure in character expression from that of the recipient variety, a method is outlined whereby the number of genes on a particular chromosome can be determined. The merits of the substitution method are discussed, and it is concluded that it is valuable, and gives a high degree of precision in genetic studies of polyploid organisms and that under certain conditions its effectiveness is similar to that of the backcross method for incorporating characters controlled by one or two genes into a given line or variety.


Sign in / Sign up

Export Citation Format

Share Document